Displaying all 6 publications

Abstract:
Sort:
  1. Asghar M, Yahya R, Yap AUJ, Azzahari AD, Omar RA
    Caries Res, 2022;56(3):149-160.
    PMID: 35871511 DOI: 10.1159/000525505
    Silver diammine fluoride (SDF) is known as a noninvasive, cost-effective, safe, and simple method of dental caries treatment. However, staining and discoloration seem inseparable with SDF and continue as a cosmetic concern. Research is ongoing to overcome these issues, for example, by using glutathione (G) or potassium iodide among others. Therefore, the study aimed to investigate the effects of incorporating different concentrations of capping agents on SDF chemistry and SDF-mediated tooth staining at different time points. Tannic acid (TA), gallic acid (GA), carboxymethyl chitosan (CM), and G at different concentrations (5, 10, and 15% w/v) were incorporated in 30% SDF. FTIR and UV-Vis spectroscopies of the prepared solutions was performed to evaluate chemical changes. Time-dependent color changes (ΔE) in bovine dentine specimens (6 × 6 × 1 ± 0.25 mm3) were measured spectrophotometrically at application/washup, 1 and 3 h, after 1, 2, 4, 7, and 14 days. Results showed suppression of FTIR peaks at 3,358 cm-1 and 1,215 cm-1 in capping agent-modified SDF indicative of a successful capping effect of the silver ions, which was corroborated by UV-Vis blueshift of ∼∆32 nm. The capping effect on SDF increased proportionally with the concentrations of TA, GA, CM, and G used. A more pronounced tooth staining reduction however was shown more in TA- and G- rather than in GA- and CM-modified SDF. At day 14, SDF showed the highest mean ΔE(50.14 ± 2.14), while 15% TA showed the lowest ΔE(30.14 ± 0.81). In conclusion, capping agent incorporation significantly reduced SDF-mediated tooth staining. This reduction in staining is more dependent on the respective capping agent functional groups than concentrations per se. The potential of capping agents to minimize tooth staining of SDF was TA>G>CM>GA.
    Matched MeSH terms: Quaternary Ammonium Compounds/pharmacology
  2. Daood U, Ilyas MS, Ashraf M, Akbar M, Asif A, Khan AS, et al.
    J Oral Maxillofac Surg, 2024 Sep;82(9):1147-1162.
    PMID: 38830601 DOI: 10.1016/j.joms.2024.05.004
    BACKGROUND: Treated or coated sutures promise to prevent contamination of wounds.

    PURPOSE: The purpose of the study was to coat surgical sutures with a new quaternary ammonium silane (QAS) antimicrobial compound at two different application temperatures and then to evaluate the resulting structural, physical, mechanical, and biological properties.

    STUDY DESIGN, SETTING, SAMPLE: In vitro and in vivo studies were conducted using male albino Wistar rats approved by the Joint Ethical Committee of IMU and Postgraduate Medical Institute, Lahore. Only suture samples, coated uniformly with verified presence of the compound and of adequate length were used. Samples which were not coated uniformly and with inadequate length or damaged were excluded.

    PREDICTOR VARIABLE: Predictor variables were sutures with and without QAS coatings and different temperatures. Sutures were coated with QAS at 0.5 and 1.0% wt/vol using the dip coating technique and sutures with and without QAS coating were tested at 25 and 40 °C temperatures.

    MAIN OUTCOME VARIABLE(S): Outcome variables of structural and physico-mechanical properties of QAS-coated and non-coated sutures were measured using Fourier transform infrared spectroscopy (for structural changes), confocal laser and scanning electron (for diameter changes), and tensile strength/modulus (for mechanical testing). Biologic outcome variables were tested (bacterial viability); macrophage cultures from Wistar rats were tested (M1/M2 polarization detecting IL-6 and IL-10). Macrophage cells were analyzed with CD80+ (M1) and CD163+ (M2). Chemotaxis index was calculated as a ratio of quantitative fluorescence of cells.

    COVARIATES: Not applicable.

    ANALYSES: Ordinal data among groups were compared using the Wilcoxon Mann-Whitney U test along with the comparison of histological analysis using the Wilcoxon Sign-rank test (P 

    Matched MeSH terms: Quaternary Ammonium Compounds/pharmacology
  3. Wong SP, Lim WH, Cheng SF, Chuah CH
    Colloids Surf B Biointerfaces, 2012 Jan 1;89:48-52.
    PMID: 21937202 DOI: 10.1016/j.colsurfb.2011.08.021
    Quaternary ammonium compounds (QACs) are commonly used as disinfectant in medical care, food industry, detergents and glue industries. This is due to a small concentration of QACs is sufficient to inhibit the growth of various bacteria strains. In this work, the inhibitive power of cationic surfactants, alkyltrimethylammonium bromide (C(n)TAB) in the presence of anionic surfactants, sodium alkyl methyl ester α-sulfonate (C(n)MES) was studied. The growth inhibition test with gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria were used to determine the toxicity of single and mixed surfactants. Results from this work showed that certain mixed surfactants have lower minimum inhibition concentration (MIC) as compared to the single C(n)TAB surfactants. Besides that, it was also found that alkyl chain length and the mixing ratios of the surfactants play a significant role in determining the mixture inhibitive power.
    Matched MeSH terms: Quaternary Ammonium Compounds/pharmacology
  4. Babaei M, Sulong A, Hamat R, Nordin S, Neela V
    PMID: 25858356 DOI: 10.1186/s12941-015-0071-7
    Antiseptics are commonly used for the management of MDR (multiple drug resistance) pathogens in hospitals. They play crucial roles in the infection control practices. Antiseptics are often used for skin antisepsis, gauze dressing, preparation of anatomical sites for surgical procedure, hand sterilization before in contact with an infected person, before an invasive procedure and as surgical scrub.
    Matched MeSH terms: Quaternary Ammonium Compounds/pharmacology*
  5. Daood U, Matinlinna JP, Pichika MR, Mak KK, Nagendrababu V, Fawzy AS
    Sci Rep, 2020 07 03;10(1):10970.
    PMID: 32620785 DOI: 10.1038/s41598-020-67616-z
    To study the antimicrobial effects of quaternary ammonium silane (QAS) exposure on Streptococcus mutans and Lactobacillus acidophilus bacterial biofilms at different concentrations. Streptococcus mutans and Lactobacillus acidophilus biofilms were cultured on dentine disks, and incubated for bacterial adhesion for 3-days. Disks were treated with disinfectant (experimental QAS or control) and returned to culture for four days. Small-molecule drug discovery-suite was used to analyze QAS/Sortase-A active site. Cleavage of a synthetic fluorescent peptide substrate, was used to analyze inhibition of Sortase-A. Raman spectroscopy was performed and biofilms stained for confocal laser scanning microscopy (CLSM). Dentine disks that contained treated dual-species biofilms were examined using scanning electron microscopy (SEM). Analysis of DAPI within biofilms was performed using CLSM. Fatty acids in bacterial membranes were assessed with succinic-dehydrogenase assay along with time-kill assay. Sortase-A protein underwent conformational change due to QAS molecule during simulation, showing fluctuating alpha and beta strands. Spectroscopy revealed low carbohydrate intensities in 1% and 2% QAS. SEM images demonstrated absence of bacterial colonies after treatment. DAPI staining decreased with 1% QAS (p ammonium silane demonstrated to be a potent antibacterial cavity disinfectant and a plaque inhibitor and can be of potential significance in eliminating caries-forming bacteria.
    Matched MeSH terms: Quaternary Ammonium Compounds/pharmacology*
  6. Dhand C, Balakrishnan Y, Ong ST, Dwivedi N, Venugopal JR, Harini S, et al.
    Int J Nanomedicine, 2018;13:4473-4492.
    PMID: 30122921 DOI: 10.2147/IJN.S159770
    Introduction: In search for cross-linkers with multifunctional characteristics, the present work investigated the utility of quaternary ammonium organosilane (QOS) as a potential cross-linker for electrospun collagen nanofibers. We hypothesized that the quaternary ammonium ions improve the electrospinnability by reducing the surface tension and confer antimicrobial properties, while the formation of siloxane after alkaline hydrolysis could cross-link collagen and stimulate cell proliferation.

    Materials and methods: QOS collagen nanofibers were electrospun by incorporating various concentrations of QOS (0.1%-10% w/w) and were cross-linked in situ after exposure to ammonium carbonate. The QOS cross-linked scaffolds were characterized and their biological properties were evaluated in terms of their biocompatibility, cellular adhesion and metabolic activity for primary human dermal fibroblasts and human fetal osteoblasts.

    Results and discussion: The study revealed that 1) QOS cross-linking increased the flexibility of otherwise rigid collagen nanofibers and improved the thermal stability; 2) QOS cross-linked mats displayed potent antibacterial activity and 3) the biocompatibility of the composite mats depended on the amount of QOS present in dope solution - at low QOS concentrations (0.1% w/w), the mats promoted mammalian cell proliferation and growth, whereas at higher QOS concentrations, cytotoxic effect was observed.

    Conclusion: This study demonstrates that QOS cross-linked mats possess anti-infective properties and confer niches for cellular growth and proliferation, thus offering a useful approach, which is important for hard and soft tissue engineering and regenerative medicine.

    Matched MeSH terms: Quaternary Ammonium Compounds/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links