Displaying publications 1 - 20 of 57 in total

Abstract:
Sort:
  1. Ramani VC, Shah RD, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2018 Sep 01;74(Pt 9):1254-1258.
    PMID: 30225111 DOI: 10.1107/S2056989018011477
    The title compound, C16H15N5O2, adopts the shape of the letter L with the dihedral angle between the outer pyridyl rings being 78.37 (5)°; the dihedral angles between the central pyrazolyl ring (r.m.s. deviation = 0.0023 Å) and the methyl-ene-bound pyridyl and methyoxypyridyl rings are 77.68 (5) and 7.84 (10)°, respectively. Intra-molecular amide-N-H⋯N(pyrazol-yl) and pyridyl-C-H⋯O(amide) inter-actions are evident and these preclude the participation of the amide-N-H and O atoms in inter-molecular inter-actions. The most notable feature of the mol-ecular packing is the formation of linear supra-molecular chains aligned along the b-axis direction mediated by weak carbonyl-C=O⋯π(triazol-yl) inter-actions. An analysis of the calculated Hirshfeld surfaces point to the importance of H⋯H (46.4%), C⋯H (22.4%), O⋯H (11.9%) and N⋯H (11.1%) contacts in the crystal.
    Matched MeSH terms: Pyrazoles
  2. Adam F, Charishma SP, Prabhu BR, Samshuddin S, Ameram N
    Acta Crystallogr E Crystallogr Commun, 2015 Dec 1;71(Pt 12):o1020.
    PMID: 26870475 DOI: 10.1107/S2056989015022811
    In the title compound, C24H20N2, the dihedral angles between the pyrazole ring and the pendant phenyl, toluoyl and phenyl-ethenyl rings are 41.50 (8), 4.41 (8) and 31.07 (8)°, respectively. In the crystal, inversion dimers linked by a π-π stacking inter-actions between the phenyl-ethenyl rings are observed [centroid-centroid separation = 3.5857 (9) Å].
    Matched MeSH terms: Pyrazoles
  3. Loh WS, Quah CK, Chia TS, Fun HK, Sapnakumari M, Narayana B, et al.
    Molecules, 2013 Feb 20;18(2):2386-96.
    PMID: 23429377 DOI: 10.3390/molecules18022386
    Four pyrazole compounds, 3-(4-fluorophenyl)-5-phenyl-4,5-dihydro-1H-pyrazole-1-carbaldehyde (1), 5-(4-bromophenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrazole-1-carbaldehyde (2), 1-[5-(4-chlorophenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl]ethanone (3) and 1-[3-(4-fluorophenyl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl]propan-1-one (4), have been prepared by condensing chalcones with hydrazine hydrate in the presence of aliphatic acids, namely formic acid, acetic acid and propionic acid. The structures were characterized by X-ray single crystal structure determination. The dihedral angles formed between the pyrazole and the fluoro-substituted rings are 4.64(7)° in 1, 5.3(4)° in 2 and 4.89(6)° in 3. In 4, the corresponding angles for molecules A and molecules B are 10.53(10)° and 9.78(10)°, respectively.
    Matched MeSH terms: Pyrazoles/chemical synthesis*; Pyrazoles/chemistry*
  4. Adam F, Samshuddin S, Shruthi, Narayana B, Ameram N
    Acta Crystallogr E Crystallogr Commun, 2015 Dec 1;71(Pt 12):o1093-4.
    PMID: 26870515 DOI: 10.1107/S2056989015023658
    In the title compound, C18H18N2O2, the pyrazole ring has a twisted conformation on the CH-CH2 bond. The tolyl ring and the 4-meth-oxy-phenyl ring are inclined to the mean plane of the pyrazole ring by 4.40 (9) and 86.22 (9)°, respectively, while the two aromatic rings are inclined to one another by 88.75 (9)°. In the crystal, mol-ecules are linked via bifurcated C-H⋯(O,O) hydrogen bonds and C-H⋯π inter-actions, forming sheets lying parallel to the ab plane.
    Matched MeSH terms: Pyrazoles
  5. Hasan A, Abbas A, Akhtar MN
    Molecules, 2011 Sep 13;16(9):7789-802.
    PMID: 22143543 DOI: 10.3390/molecules16097789
    A series of 1,3,5-triaryl-2-pyrazolines was synthesized by dissolving the corresponding 4-alkoxychalcones in glacial acetic acid containing a few drops of concentrated hydrochloric acid. This step was followed by the addition of (3,4-dimethylphenyl) hydrazaine hydrochloride. Finally the target compounds were precipitated by pouring the reaction mixture onto crushed ice. The structures of the synthesized compounds were established by physicochemical and spectroscopic methods. The 1,3,5-triaryl-2-pyrazolines bearing homologous alkoxy groups were found to possess fluorescence properties in the blue region of the visible spectrum when irradiated with ultraviolet radiation. The fluorescent behavior of these compounds was studied by UV-Vis and emission spectroscopy, performed at room temperature.
    Matched MeSH terms: Pyrazoles/chemical synthesis; Pyrazoles/chemistry
  6. Ravindar L, Hasbullah SA, Rakesh KP, Hassan NI
    Eur J Pharm Sci, 2023 Apr 01;183:106365.
    PMID: 36563914 DOI: 10.1016/j.ejps.2022.106365
    Malaria poses a severe public health risk and a significant economic burden in disease-endemic countries. One of the most severe issues in malaria control is the development of drug resistance in malaria parasites. The standard treatment for malaria is artemisinin-combination therapy (ACT). Nevertheless, the Plasmodium parasite's extensive resistance to prior drugs and reduced ACT efficiency necessitates novel drug discovery. The progress in discovering novel, affordable, and effective antimalarial agents is significant in combating drug resistance, and the hybrid drug concept can be used to covalently link two or more active pharmacophores that may act on multiple targets. Pyrazole and pyrazoline derivatives are considered pharmacologically necessary active heterocyclic scaffolds that possess almost all types of pharmacological activities. This review summarized recent progress in antimalarial activities of synthesized pyrazole and pyrazoline derivatives. The studies published since 2000 are included in this systematic review. This review is anticipated to be beneficial for future study and new ideas in searching for rational development strategies for more effective pyrazole and pyrazoline derivatives as antimalarial drugs.
    Matched MeSH terms: Pyrazoles/pharmacology
  7. Ali MA, Bastian S, Ismail R, Choon TS, Ali S, Aubry A, et al.
    J Enzyme Inhib Med Chem, 2011 Dec;26(6):890-4.
    PMID: 21395486 DOI: 10.3109/14756366.2011.559945
    A series of pyrazoline derivatives were synthesized and in vitro activity against Mycobacterium tuberculosis H37Rv was carried out. Among the synthesized compounds, compounds (4d) and (4f) 4-aminophenyl-3-(3,4-dimethoxyphenyl)-6,7-dimethoxy-2,3,3a,4-tetrahydroindeno[1,2-c]pyrazol-2-ylmethanone and 4-aminophenyl-6,7-dimethoxy-3-phenyl-2,3,3a,4-tetrahydroindeno[1,2-c]pyrazol-2-ylmethanone were found to be the most active agent against M. tuberculosis H37Rv with a minimum inhibitory concentration of 10 μg/mL.
    Matched MeSH terms: Pyrazoles/chemical synthesis; Pyrazoles/pharmacology*; Pyrazoles/chemistry
  8. Adam F, Samshuddin S, Ameram N, Subramaya, Samartha L
    Acta Crystallogr E Crystallogr Commun, 2015 Dec 1;71(Pt 12):o1031-2.
    PMID: 26870482 DOI: 10.1107/S2056989015023294
    The title compound, C19H21N3O, comprises a central pyrazole ring which is N-connected to an aldehyde group and C-connected twice to substituted benzene rings. The pyrazole ring is twisted on the C-C single bond, and the least-squares plane through this ring forms dihedral angles of 82.44 (5) and 4.52 (5)° with the (di-methyl-amino)-benzene and p-tolyl rings, respectively. In the crystal, weak C-H⋯O hydrogen bonds link mol-ecules into supra-molecular tubes along the b axis.
    Matched MeSH terms: Pyrazoles
  9. Manoharan S, Ying LY
    Respir Med, 2022 Oct;202:106986.
    PMID: 36150282 DOI: 10.1016/j.rmed.2022.106986
    BACKGROUND: There are conflicting reports on the results of several of the latest clinical trials related to the use of baricitinib in the management of COVID-19 patients. The aim of the current systematic review and meta-analysis was to evaluate the efficacy of baricitinib in COVID-19 patients.

    METHODS: Databases like ScienceDirect, PubMed/Medline, Publons, Google Scholar and other sources like ClinicalTrials.gov, Cochrane, medRxiv, Research Square and reference lists were thoroughly searched.

    RESULTS: Fifteen (15) articles which met the inclusion criteria were qualitatively and quantitatively analysed. Based on Cochrane and Newcastle-Ottawa Scale (NOS) risk of bias (RoB) analyses, 14/15 articles are grouped as high-quality. Meta-analyses revealed that randomised control trials (RCTs) and non-randomised control trials (nRCTs) statistically significantly reduced the mortality rate in COVID-19 patients, with a risk ratio (RR) in the fixed-effect model was RR = 0.64 [95% CI: 0.51 to 0.79; p 

    Matched MeSH terms: Pyrazoles
  10. Gao M, Qu K, Zhang W, Wang X
    Neuroimmunomodulation, 2021;28(2):90-98.
    PMID: 33774633 DOI: 10.1159/000513297
    INTRODUCTION: Pediatric patients with epilepsy are prone to cognitive impairments during growth and long-term use of most antiepileptic drugs (AED). The affected children do not respond to conventional AED and may require novel drugs to manage the disease. Valproic acid, a first-line drug to treat epilepsy, is associated with serious side effects, which precludes its wider use. Thus, in the present study, we intended to develop novel substituted pyrazoles.

    METHODS: The molecules were tested for anticonvulsive activity in Swiss albino mice via maximal electroshock seizure and subcutaneous pentylenetetrazole assays. The most potent molecule among the class was further assayed for its effect on behavioral and CNS depressant activity. The effect of the most potent compounds was also analyzed on various indices of oxidative stress and inflammation in mice.

    RESULTS: The designed compounds showed significant anticonvulsive activity in mice revealing 7h as the most potent anticonvulsive agent. The most potent anticonvulsant molecule 7h further showed no behavioral alteration and considerable CNS depressant activity. It also reduces the level of oxidative stress and inflammation in the mice.

    CONCLUSION: Our study demonstrated utility of pyrazole derivatives as anticonvulsants against epilepsy.

    Matched MeSH terms: Pyrazoles/therapeutic use
  11. Chigurupati S, Selvaraj M, Mani V, Selvarajan KK, Mohammad JI, Kaveti B, et al.
    Bioorg Chem, 2016 08;67:9-17.
    PMID: 27231830 DOI: 10.1016/j.bioorg.2016.05.002
    The synthesis of novel indolopyrazoline derivatives (P1-P4 and Q1-Q4) has been characterized and evaluated as potential anti-Alzheimer agents through in vitro Acetylcholinesterase (AChE) inhibition and radical scavenging activity (antioxidant) studies. Specifically, Q3 shows AChE inhibition (IC50: 0.68±0.13μM) with strong DPPH and ABTS radical scavenging activity (IC50: 13.77±0.25μM and IC50: 12.59±0.21μM), respectively. While P3 exhibited as the second most potent compound with AChE inhibition (IC50: 0.74±0.09μM) and with DPPH and ABTS radical scavenging activity (IC50: 13.52±0.62μM and IC50: 13.13±0.85μM), respectively. Finally, molecular docking studies provided prospective evidence to identify key interactions between the active inhibitors and the AChE that furthermore led us to the identification of plausible binding mode of novel indolopyrazoline derivatives. Additionally, in-silico ADME prediction using QikProp shows that these derivatives fulfilled all the properties of CNS acting drugs. This study confirms the first time reporting of indolopyrazoline derivatives as potential anti-Alzheimer agents.
    Matched MeSH terms: Pyrazoles/chemical synthesis; Pyrazoles/pharmacology*; Pyrazoles/chemistry
  12. Zhan SZ, Chen W, Zheng J, Ng SW, Li D
    Dalton Trans, 2021 Jan 18.
    PMID: 33459321 DOI: 10.1039/d0dt03661g
    Five luminescent polymorphic aggregates of trinuclear Cu(i)-pyrazolate, namely [anti-Cu3L3]2 (1), [syn-Cu3L3·C2H5OH]2 (2), [anti-Cu3L3·C2H5OH]n (3), [anti-Cu3L3·0.5C7H8]n (4) and [syn-Cu3L3·C8H10]n (5) (HL = 4-(pyridin-4-ylthio)-3,5-dimethyl-1H-pyrazole), were reported. The trimeric Cu3L3 fragments present syn- and anti-conformations dependent on the dangled direction of 4-pyridyl groups on the two sides of the Cu3Pz3 plane (Pz = pyrazolate). Intertrimeric NPyCu weak coordination bonds associate these Cu3L3 fragments together to form dimeric or polymeric structures, which are further stabilized by crystallized solvent molecules or intertrimeric CuCu interactions. The solvated complexes (3-5) may be transformed into the unsolvated complex 1 by evacuation of the crystallized solvents upon heating. All these complexes emit from green to yellow under UV irradiation, which originated from the triplet excited states of metal to ligand charge transfer (3MLCT) mixed with intertrimeric CuCu interactions. This work provides a novel kind of supramolecular aggregate based on Cu3Pz3 beyond the classical π-acidbase adducts and metallophilicity-dependent dimers/oligomers.
    Matched MeSH terms: Pyrazoles
  13. Wang H, Chen M, Sang X, You X, Wang Y, Paterson IC, et al.
    Eur J Med Chem, 2020 Apr 01;191:112154.
    PMID: 32092587 DOI: 10.1016/j.ejmech.2020.112154
    Transforming growth factor-β (TGF-β) is a member of a superfamily of pleiotropic proteins that regulate multiple cellular processes such as growth, development and differentiation. Following binding to type I and II TGF-β serine/threonine kinase receptors, TGF-β activates downstream signaling cascades involving both SMAD-dependent and -independent pathways. Aberrant TGF-β signaling is associated with a variety of diseases, such as fibrosis, cardiovascular disease and cancer. Hence, the TGF-β signaling pathway is recognized as a potential drug target. Various organic molecules have been designed and developed as TGF-β signaling pathway inhibitors and they function by either down-regulating the expression of TGF-β or by inhibiting the kinase activities of the TGF-β receptors. In this review, we discuss the current status of research regarding organic molecules as TGF-β inhibitors, focusing on the biological functions and the binding poses of compounds that are in the market or in the clinical or pre-clinical phases of development.
    Matched MeSH terms: Pyrazoles/chemical synthesis; Pyrazoles/pharmacology*; Pyrazoles/chemistry
  14. Mary YS, Panicker CY, Sapnakumari M, Narayana B, Sarojini BK, Al-Saadi AA, et al.
    Spectrochim Acta A Mol Biomol Spectrosc, 2015 Feb 5;136 Pt B:473-82.
    PMID: 25448948 DOI: 10.1016/j.saa.2014.09.060
    The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of 1-[5-(4-bromophenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl]ethanone have been investigated experimentally and theoretically using Gaussian09 software package. The title compound was optimized using the HF/6-31G(d) (6D, 7F), B3LYP/6-31G (6D, 7F) and B3LYP/6-311++G(d,p) (5D, 7F) calculations. The B3LYP/6-311++G(d,p) (5D, 7F) results and in agreement with experimental infrared bands. The geometrical parameters are in agreement with XRD data. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. Molecular electrostatic potential was also performed. From the MEP it is evident that the negative charge covers the C=O group and the positive region is over the rings. First hyperpolarizability is calculated in order to find its role in nonlinear optics. Molecular docking studies suggest that the compound might exhibit inhibitory activity against TPII and may act as anti-neoplastic agent.
    Matched MeSH terms: Pyrazoles/pharmacology; Pyrazoles/chemistry*
  15. Junaedi S, Al-Amiery AA, Kadihum A, Kadhum AA, Mohamad AB
    Int J Mol Sci, 2013 Jun 04;14(6):11915-28.
    PMID: 23736696 DOI: 10.3390/ijms140611915
    1,5-Dimethyl-4-((2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-one (DMPO) was synthesized to be evaluated as a corrosion inhibitor. The corrosion inhibitory effects of DMPO on mild steel in 1.0 M HCl were investigated using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, open circuit potential (OCP) and electrochemical frequency modulation (EFM). The results showed that DMPO inhibited mild steel corrosion in acid solution and indicated that the inhibition efficiency increased with increasing inhibitor concentration. Changes in the impedance parameters suggested an adsorption of DMPO onto the mild steel surface, leading to the formation of protective films. The novel synthesized corrosion inhibitor was characterized using UV-Vis, FT-IR and NMR spectral analyses. Electronic properties such as highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy (EHOMO and ELUMO, respectively) and dipole moment (μ) were calculated and discussed. The results showed that the corrosion inhibition efficiency increased with an increase in the EHOMO values but with a decrease in the ELUMO value.
    Matched MeSH terms: Pyrazoles/chemical synthesis; Pyrazoles/chemistry
  16. Basir NH, Ramle AQ, Ng MP, Tan CH, Tiekink ERT, Sim KS, et al.
    Bioorg Chem, 2024 May;146:107256.
    PMID: 38460334 DOI: 10.1016/j.bioorg.2024.107256
    A new series of indolenines decorated with pyrazolo[3,4-b]pyridines were designed and synthesized in up to 96% yield from the acid-catalyzed cyclocondensation of 1,3-dialdehydes with 3-aminopyrazoles. X-ray crystallography on a representative derivative, 5n, revealed two close to planar conformations whereby the N-atom of the pyridyl residue was syn or anti to the pyrrole-N atom in the two independent molecules of the asymmetric unit. The computational and DNA binding data suggest that 5n is a strong DNA intercalator with the results in agreement with its potent cytotoxicity against two colorectal cancer cell lines (HCT 116 and HT-29). In contrast to doxorubicin, compounds 5k-o have higher druggability (compliance to more criteria stated in Lipinski's rule of five and Veber's rule), higher bioavailability, and better medicinal chemistry properties, indicative of their potential application as chemotherapeutical agents.
    Matched MeSH terms: Pyrazoles/pharmacology; Pyrazoles/chemistry
  17. Ibraheem F, Ahmad M, Ashfaq UA, Aslam S, Khan ZA, Sultan S
    Pak J Pharm Sci, 2020 Mar;33(2(Supplementary)):847-854.
    PMID: 32863261
    Pyrazoline and benzimidazoles derivatives have been widely studied due to their potential applications in the medicinal field. In this research project, we have hybridized these two heterocyclic systems in the same molecule. A new series of compounds, 2-((3,5-diaryl-4,5-dihydro-1H-pyrazol-1-yl)methyl)-1H-benzo[d]imidazole (5a-i) were synthesized through a multistep reaction. In the first step, chalcones 3a-i were prepared by coupling of various acetophenones and benzaldehydes under alkaline conditions. These chalcones were cyclized with hydrazine hydrate to form a series of pyrazolines which were finally coupled with 2-chloromethyl-1H-benzimidazole to get a new series of titled hybrid molecules. The structures of these compounds were elucidated by spectral (1H NMR and 13C NMR) analysis. The anti-diabetic potential of these compounds was studied by screening them for their α-glucosidase inhibition activity. The SAR was established through molecular docking analysis. Compound 5d appeared as effective inhibitor with IC50 = 50.06μM as compared to reference drug (acarbose) having IC50 = 58.8μM.
    Matched MeSH terms: Pyrazoles/chemical synthesis*; Pyrazoles/pharmacology*
  18. Bukhari SN, Zhang X, Jantan I, Zhu HL, Amjad MW, Masand VH
    Chem Biol Drug Des, 2015 Jun;85(6):729-42.
    PMID: 25328063 DOI: 10.1111/cbdd.12457
    A novel series of 1,3-diphenyl-2-propen-1-one (chalcone) derivatives was synthesized by a simple, eco-friendly, and efficient Claisen-Schmidt condensation reaction and used as precursors for the synthesis of new pyrazoline derivatives. All the synthesized compounds were screened for anti-inflammatory related activities such as inhibition of phospholipase A(2) (PLA(2)), cyclooxygenases (COX-1 and COX-2), IL-6, and TNF-α. The results of the above studies show that the compounds synthesized are effective inhibitors of above pro-inflammatory enzymes and cytokines. Overall, the results of the studies reveal that the pyrazolines with chlorophenyl substitution (1b-6b) seem to be important for inhibition of enzymes and cytokines. Molecular docking experiments were performed to clarify the molecular aspects of the observed COX-inhibitory activities of the investigated compounds.
    Matched MeSH terms: Pyrazoles/chemical synthesis; Pyrazoles/pharmacology*; Pyrazoles/chemistry*
  19. Abbas A, Nazir H, Naseer MM, Bolte M, Hussain S, Hafeez N, et al.
    PMID: 24177882 DOI: 10.1016/j.saa.2013.10.023
    A series of new pyrazoline derivatives (1b-4c) bearing N-acyl arms and nine to twelve carbon long alkoxy side chains was synthesized and characterized on the basis of spectroscopic data and microanalysis. The nature of self-assembly to understand the interplay of alkoxy chain crystallization and various supramolecular interactions was investigated using single crystal X-ray diffraction studies. Interesting self-assembled supramolecular structures of 1b and 4c were observed in the crystal lattice owing to various CH⋯O, H⋯H, CH⋯π, lonepair⋯π and π⋯π interactions. Further, all the synthesized compounds (1b-4c) were screened for their in vitro antifungal and anti-inflammatory activities. Compounds 2b, 3b, 2c and 3c showed significant to moderate antifungal activity against Microsporum canis whereas most of the other compounds were found inactive against all the five tested fungal strains. Good anti-inflammatory activity was observed for compounds 1b with IC50 value 331 μM compared to 273 μM for Indomethacine, a standard reference drug. The bio-activity data demonstrates the relationship between lipophilicity, solubility and bioavailability.
    Matched MeSH terms: Pyrazoles/chemical synthesis; Pyrazoles/pharmacology*; Pyrazoles/chemistry*
  20. Al-Adiwish WM, Tahir MI, Siti-Noor-Adnalizawati A, Hashim SF, Ibrahim N, Yaacob WA
    Eur J Med Chem, 2013 Jun;64:464-76.
    PMID: 23669354 DOI: 10.1016/j.ejmech.2013.04.029
    New 5-aminopyrazoles 2a-c were prepared in high yields from the reaction of known α,α-dicyanoketene-N,S-acetals 1a-c with hydrazine hydrate under reflux in ethanol. These compounds were utilized as intermediates to synthesize pyrazolo[1,5-a]-pyrimidines 3a-c, 4a-d, 5a-c, and 6a-c, as well as pyrazolo[5,1-c][1,2,4]triazines 7a-c and 8a-c, by the reaction of 2-[bis(methylthio)methylene]malononitrile, α,α-dicyanoketene-N,S-acetals 1a-b, acetylacetone, acetoacetanilide as well as acetylacetone, and malononitrile, respectively. Furthermore, cyclization of 2a-c with pentan-2,5-dione yielded the corresponding 5-pyrrolylpyrazoles 9a-c. Moreover, fusion of 2a-c with acetic anhydride resulted in the corresponding 1-acetyl-1H-pyrazoles 10a-c. The antibacterial activity and cytotoxicity against Vero cells of several selected compounds are also reported.
    Matched MeSH terms: Pyrazoles/chemical synthesis; Pyrazoles/pharmacology*; Pyrazoles/chemistry*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links