Displaying all 3 publications

Abstract:
Sort:
  1. Razak SAA, Murad NAA, Masra F, Chong DLS, Abdullah N, Jalil N, et al.
    Curr Mol Med, 2018;18(5):295-305.
    PMID: 30289070 DOI: 10.2174/1566524018666181004121604
    BACKGROUND: The phenotypic severity of β-thalassemia is highly modulated by three genetic modifiers: β-globin (HBB) mutations, co-inheritance of α-thalassemia and polymorphisms in the genes associated with fetal haemoglobin (HbF) production. This study was aimed to evaluate the effect of HbF related polymorphisms mainly in the HBB cluster, BCL11A (B-cell CLL/lymphoma 11A) and HBS1L-MYB (HBS1-like translational GTPase-MYB protooncogene, transcription factor) with regards to clinical severity.

    METHODS: A total of 149 patients were included in the study. HBA and HBB mutations were characterised using multiplex PCR, Sanger sequencing and multiplex ligationdependent probe amplification. In addition, 35 HbF polymorphisms were genotyped using mass spectrometry and PCR-restriction fragment length polymorphism (PCRRFLP). The genotype-phenotype association was analysed using SPSS version 22.

    RESULTS: Twenty-one HBB mutations were identified in the study population. Patients with HBB mutations had heterogeneous phenotypic severity due to the presence of other secondary modifiers. Co-inheritance of α-thalassemia (n = 12) alleviated disease severity of β-thalassemia. In addition, three polymorphisms (HBS1LMYB, rs4895441 [P = 0.008, odds ratio (OR) = 0.38 (0.18, 0.78)], rs9376092 [P = 0.030, OR = 0.36 (0.14, 0.90)]; and olfactory receptor [OR51B2] rs6578605 [P = 0.018, OR = 0.52 (0.31, 0.89)]) were associated with phenotypic severity. Secondary analysis of the association between single-nucleotide polymorphisms with HbF levels revealed three nominally significant SNPs: rs6934903, rs9376095 and rs9494149 in HBS1L-MYB.

    CONCLUSION: This study revealed 3 types of HbF polymorphisms that play an important role in ameliorating disease severity of β-thalassemia patients which may be useful as a predictive marker in clinical management.

    Matched MeSH terms: Proto-Oncogene Proteins c-myb/genetics*
  2. Gao Y, Zhang W, Liu C, Li G
    Sci Rep, 2019 12 11;9(1):18844.
    PMID: 31827114 DOI: 10.1038/s41598-019-54289-6
    Resistance to tamoxifen is a major clinical challenge. Research in recent years has identified epigenetic changes as mediated by dysregulated miRNAs that can possibly play a role in resistance to tamoxifen in breast cancer patients expressing estrogen receptor (ER). We report here elevated levels of EMT markers (vimentin and ZEB1/2) and reduced levels of EMT-regulating miR-200 (miR-200b and miR-200c) in ER-positive breast cancer cells, MCF-7, that were resistant to tamoxifen, in contrast with the naïve parental MCF-7 cells that were sensitive to tamoxifen. Further, we established regulation of c-MYB by miR-200 in our experimental model. C-MYB was up-regulated in tamoxifen resistant cells and its silencing significantly decreased resistance to tamoxifen and the EMT markers. Forced over-expression of miR-200b/c reduced c-MYB whereas reduced expression of miR-200b/c resulted in increased c-MYB We further confirmed the results in other ER-positive breast cancer cells T47D cells where forced over-expression of c-MYB resulted in induction of EMT and significantly increased resistance to tamoxifen. Thus, we identify a novel mechanism of tamoxifen resistance in breast tumor microenvironment that involves miR-200-MYB signaling.
    Matched MeSH terms: Proto-Oncogene Proteins c-myb/genetics
  3. Munkongdee T, Tongsima S, Ngamphiw C, Wangkumhang P, Peerapittayamongkol C, Hashim HB, et al.
    Sci Rep, 2021 05 14;11(1):10352.
    PMID: 33990643 DOI: 10.1038/s41598-021-89641-2
    β-Thalassemia/HbE disease has a wide spectrum of clinical phenotypes ranging from asymptomatic to dependent on regular blood transfusions. Ability to predict disease severity is helpful for clinical management and treatment decision making. A thalassemia severity score has been developed from Mediterranean β-thalassemia patients. However, different ethnic groups may have different allele frequency and linkage disequilibrium structures. Here, Thai β0-thalassemia/HbE disease genome-wild association studies (GWAS) data of 487 patients were analyzed by SNP interaction prioritization algorithm, interacting Loci (iLoci), to find predictive SNPs for disease severity. Three SNPs from two SNP interaction pairs associated with disease severity were identifies. The three-SNP disease severity risk score composed of rs766432 in BCL11A, rs9399137 in HBS1L-MYB and rs72872548 in HBE1 showed more than 85% specificity and 75% accuracy. The three-SNP predictive score was then validated in two independent cohorts of Thai and Malaysian β0-thalassemia/HbE patients with comparable specificity and accuracy. The SNP risk score could be used for prediction of clinical severity for Southeast Asia β0-thalassemia/HbE population.
    Matched MeSH terms: Proto-Oncogene Proteins c-myb/genetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links