Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Schönbach C, Tan TW, Kelso J, Rost B, Nathan S, Ranganathan S
    BMC Genomics, 2011 Nov 30;12 Suppl 3:S1.
    PMID: 22369160 DOI: 10.1186/1471-2164-12-S3-S1
    In 2009 the International Society for Computational Biology (ISCB) started to roll out regional bioinformatics conferences in Africa, Latin America and Asia. The open and competitive bid for the first meeting in Asia (ISCB-Asia) was awarded to Asia-Pacific Bioinformatics Network (APBioNet) which has been running the International Conference on Bioinformatics (InCoB) in the Asia-Pacific region since 2002. InCoB/ISCB-Asia 2011 is held from November 30 to December 2, 2011 in Kuala Lumpur, Malaysia. Of 104 manuscripts submitted to BMC Genomics and BMC Bioinformatics conference supplements, 49 (47.1%) were accepted. The strong showing of Asia among submissions (82.7%) and acceptances (81.6%) signals the success of this tenth InCoB anniversary meeting, and bodes well for the future of ISCB-Asia.
    Matched MeSH terms: Proteome/metabolism
  2. Yelamanchi SD, Tyagi A, Mohanty V, Dutta P, Korbonits M, Chavan S, et al.
    OMICS, 2018 12;22(12):759-769.
    PMID: 30571610 DOI: 10.1089/omi.2018.0160
    The pituitary function is regulated by a complex system involving the hypothalamus and biological networks within the pituitary. Although the hormones secreted from the pituitary have been well studied, comprehensive analyses of the pituitary proteome are limited. Pituitary proteomics is a field of postgenomic research that is crucial to understand human health and pituitary diseases. In this context, we report here a systematic proteomic profiling of human anterior pituitary gland (adenohypophysis) using high-resolution Fourier transform mass spectrometry. A total of 2164 proteins were identified in this study, of which 105 proteins were identified for the first time compared with high-throughput proteomic-based studies from human pituitary glands. In addition, we identified 480 proteins with secretory potential and 187 N-terminally acetylated proteins. These are the first region-specific data that could serve as a vital resource for further investigations on the physiological role of the human anterior pituitary glands and the proteins secreted by them. We anticipate that the identification of previously unknown proteins in the present study will accelerate biomedical research to decipher their role in functioning of the human anterior pituitary gland and associated human diseases.
    Matched MeSH terms: Proteome/metabolism*
  3. Syed Sulaiman SZ, Tan WM, Radzi R, Shafie INF, Ajat M, Mansor R, et al.
    PeerJ, 2022;10:e12897.
    PMID: 35228907 DOI: 10.7717/peerj.12897
    BACKGROUND: Animal models are significant for understanding human osteoarthritis (OA). This study compared the synovial fluid proteomics changes in surgical and chemical induced OA models.

    METHODS: Thirty rabbits either had anterior cruciate ligament transection (ACLT) procedure or injected intra-articularly with monosodium iodoacetate (MIA, 8 mg) into the right knee. The joints were anatomically assessed, and the synovial fluid proteins analyzed using two-dimensional polyacrylamide gel electrophoresis (2DGE) and MALDI TOF/TOF mass spectrometry analysis at 4, 8 and 12 weeks. The proteins' upregulation and downregulation were compared with control healthy knees.

    RESULTS: Seven proteins (histidine-rich glycoprotein, beta-actin-like protein 2 isoform X1, retinol-binding protein-4, alpha-1-antiproteinase, gelsolin isoform, serotransferrin, immunoglobulin kappa-b4 chain-C-region) were significantly expressed by the surgical induction. They characterized cellular process (27%), organization of cellular components or biogenesis (27%), localization (27%) and biological regulation (18%), which related to synovitis, increased cellularity, and subsequently cartilage damage. Three proteins (apolipoprotein I-IV precursor, serpin peptidase inhibitor and haptoglobin precursor) were significantly modified by the chemical induction. They characterized stimulus responses (23%), immune responses (15%), biological regulations (15%), metabolism (15%), organization of cellular components or biogenesis (8%), cellular process (8%), biological adhesions (8%) and localization (8%), which related to chondrocytes glycolysis/death, neovascularization, subchondral bone necrosis/collapse and inflammation.

    CONCLUSIONS: The surgical induced OA model showed a wider range of protein changes, which were most upregulated at week 12. The biological process proteins expressions showed the chemical induced joints had slower OA progression compared to surgical induced joints. The chemical induced OA joints showed early inflammatory changes, which later decreased.

    Matched MeSH terms: Proteome/metabolism
  4. Rusmili MR, Yee TT, Mustafa MR, Hodgson WC, Othman I
    J Proteomics, 2014 Oct 14;110:129-44.
    PMID: 25154052 DOI: 10.1016/j.jprot.2014.08.001
    Kraits (Bungarus spp.) are highly venomous elapids that are only found in Asia. In the current study, 103 and 86 different proteins were identified from Bungarus candidus and Bungarus fasciatus venoms, respectively. These proteins were classified into 18 different venom protein families. Both venoms were found to contain a high percentage of three finger toxins, phospholipase A2 enzymes and Kunitz-type inhibitors. Smaller number of high molecular weight enzymes such as L-amino acid oxidase, hyaluronidases, and acetylcholinesterase were also detected in the venoms. We also detected some unique proteins that were not known to be present in these venoms. The presence of a natriuretic peptide, vespryn, and serine protease families was detected in B. candidus venom. We also detected the presence of subunit A and B of β-bungarotoxin and α-bungarotoxin which had not been previously found in B. fasciatus venom. Understanding the proteome composition of Malaysian krait species will provide useful information on unique toxins and proteins which are present in the venoms. This knowledge will assist in the management of krait envenoming. In addition, these proteins may have potential use as research tools or as drug-design templates.
    Matched MeSH terms: Proteome/metabolism*
  5. Liew K, Yong PV, Navaratnam V, Lim YM, Ho AS
    Phytomedicine, 2015 May 15;22(5):517-27.
    PMID: 25981917 DOI: 10.1016/j.phymed.2015.03.007
    We have previously reported the anti-metastatic effects of 2-methoxy-1,4-naphthoquinone (MNQ) against MDA-MB-231 cell line.
    Matched MeSH terms: Proteome/metabolism*
  6. Tan CH, Tan KY, Lim SE, Tan NH
    J Proteomics, 2015 Aug 3;126:121-30.
    PMID: 26047715 DOI: 10.1016/j.jprot.2015.05.035
    The venom proteome of Hydrophis schistosus (syn: Enhydrina schistosa) captured in Malaysian waters was investigated using reverse-phase HPLC, SDS-PAGE and high-resolution liquid chromatography-tandem mass spectrometry. The findings revealed a minimalist profile with only 18 venom proteins. These proteins belong to 5 toxin families: three-finger toxin (3FTx), phospholipase A2 (PLA2), cysteine-rich secretory protein (CRISP), snake venom metalloprotease (SVMP) and L-amino acid oxidase (LAAO). The 3FTxs (3 short neurotoxins and 4 long neurotoxins) constitute 70.5% of total venom protein, 55.8% being short neurotoxins and 14.7% long neurotoxins. The PLA2 family consists of four basic (21.4%) and three acidic (6.1%) isoforms. The minor proteins include one CRISP (1.3%), two SVMPs (0.5%) and one LAAO (0.2%). This is the first report of the presence of long neurotoxins, CRISP and LAAO in H. schistosus venom. The neurotoxins and the basic PLA2 are highly lethal in mice with an intravenous median lethal dose of <0.2 μg/g. Cross-neutralization by heterologous elapid antivenoms (Naja kaouthia monovalent antivenom and Neuro polyvalent antivenom) was moderate against the long neurotoxin and basic PLA2, but weak against the short neurotoxin, indicating that the latter is the limiting factor to be overcome for improving the antivenom cross-neutralization efficacy.
    Matched MeSH terms: Proteome/metabolism*
  7. Hussain H, Mustafa Kamal M, Al-Obaidi JR, Hamdin NE, Ngaini Z, Mohd-Yusuf Y
    Protein J, 2020 02;39(1):62-72.
    PMID: 31863255 DOI: 10.1007/s10930-019-09878-9
    Metroxylon sagu Rottb. or locally known as sago palm is a tropical starch crop grown for starch production in commercial plantations in Malaysia, especially in Sarawak, East Malaysia. This plant species accumulate the highest amount of edible starch compared to other starch-producing crops. However, the non-trunking phenomenon has been observed to be one of the major issues restricting the yield of sago palm starch. In this study, proteomics approach was utilised to discover differences between trunking and non-trunking proteomes in sago palm leaf tissues. Total protein from 16 years old trunking and non-trunking sago palm leaves from deep peat area were extracted with PEG fractionation extraction method and subjected to two-dimensional gel electrophoresis (2D PAGE). Differential protein spots were subjected to MALDI-ToF/ToF MS/MS. Proteomic analysis has identified 34 differentially expressed proteins between trunking and non-trunking sago samples. From these protein spots, all 19 proteins representing different enzymes and proteins have significantly increased in abundance in non-trunking sago plant when subjected to mass spectrometry. The identified proteins mostly function in metabolic pathways including photosynthesis, tricarboxylic acid cycle, glycolysis, carbon utilization and oxidative stress. The current study indicated that the several proteins identified through differentially expressed proteome contributed to physical differences in trunking and non-trunking sago palm.
    Matched MeSH terms: Proteome/metabolism*
  8. Wasinger VC, Curnoe D, Boel C, Machin N, Goh HM
    Int J Mol Sci, 2020 Sep 03;21(17).
    PMID: 32899302 DOI: 10.3390/ijms21176422
    The transitioning of cells during the systemic demise of an organism is poorly understood. Here, we present evidence that organismal death is accompanied by a common and sequential molecular flood of stress-induced events that propagate the senescence phenotype, and this phenotype is preserved in the proteome after death. We demonstrate activation of "death" pathways involvement in diseases of ageing, with biochemical mechanisms mapping onto neurological damage, embryonic development, the inflammatory response, cardiac disease and ultimately cancer with increased significance. There is sufficient bioavailability of the building blocks required to support the continued translation, energy, and functional catalytic activity of proteins. Significant abundance changes occur in 1258 proteins across 1 to 720 h post-mortem of the 12-week-old mouse mandible. Protein abundance increases concord with enzyme activity, while mitochondrial dysfunction is evident with metabolic reprogramming. This study reveals differences in protein abundances which are akin to states of stress-induced premature senescence (SIPS). The control of these pathways is significant for a large number of biological scenarios. Understanding how these pathways function during the process of cellular death holds promise in generating novel solutions capable of overcoming disease complications, maintaining organ transplant viability and could influence the findings of proteomics through "deep-time" of individuals with no historically recorded cause of death.
    Matched MeSH terms: Proteome/metabolism*
  9. Akpunarlieva S, Weidt S, Lamasudin D, Naula C, Henderson D, Barrett M, et al.
    J Proteomics, 2017 02 23;155:85-98.
    PMID: 28040509 DOI: 10.1016/j.jprot.2016.12.009
    Leishmania parasites multiply and develop in the gut of a sand fly vector in order to be transmitted to a vertebrate host. During this process they encounter and exploit various nutrients, including sugars, and amino and fatty acids. We have previously generated a mutant Leishmania line that is deficient in glucose transport and which displays some biologically important phenotypic changes such as reduced growth in axenic culture, reduced biosynthesis of hexose-containing virulence factors, increased sensitivity to oxidative stress, and dramatically reduced parasite burden in both insect vector and macrophage host cells. Here we report the generation and integration of proteomic and metabolomic approaches to identify molecular changes that may explain these phenotypes. Our data suggest changes in pathways of glycoconjugate production and redox homeostasis, which likely represent adaptations to the loss of sugar uptake capacity and explain the reduced virulence of this mutant in sand flies and mammals. Our data contribute to understanding the mechanisms of metabolic adaptation in Leishmania and illustrate the power of integrated proteomic and metabolomic approaches to relate biochemistry to phenotype.

    BIOLOGICAL SIGNIFICANCE: This paper reports the application of comparative proteomic and metabolomic approaches to reveal the molecular basis for important phenotypic changes Leishmania parasites that are deficient in glucose uptake. Leishmania cause a very significant disease burden across the world and there are few effective drugs available for control. This work shows that proteomics and metabolomics can produce complementary data that advance understanding of parasite metabolism and highlight potential new targets for chemotherapy.

    Matched MeSH terms: Proteome/metabolism*
  10. Muhammad SA, Nordin N, Mehat MZ, Fakurazi S
    Cell Tissue Res, 2019 Feb;375(2):329-344.
    PMID: 30084022 DOI: 10.1007/s00441-018-2884-0
    Articular cartilage defect remains the most challenging joint disease due to limited intrinsic healing capacity of the cartilage that most often progresses to osteoarthritis. In recent years, stem cell therapy has evolved as therapeutic strategies for articular cartilage regeneration. However, a number of studies have shown that therapeutic efficacy of stem cell transplantation is attributed to multiple secreted factors that modulate the surrounding milieu to evoke reparative processes. This systematic review and meta-analysis aim to evaluate and compare the therapeutic efficacy of stem cell and secretome in articular cartilage regeneration in animal models. We systematically searched the PubMed, CINAHL, Cochrane Library, Ovid Medline and Scopus databases until August 2017 using search terms related to stem cells, cartilage regeneration and animals. A random effect meta-analysis of the included studies was performed to assess the treatment effects on new cartilage formation on an absolute score of 0-100% scale. Subgroup analyses were also performed by sorting studies independently based on similar characteristics. The pooled analysis of 59 studies that utilized stem cells significantly improved new cartilage formation by 25.99% as compared with control. Similarly, the secretome also significantly increased cartilage regeneration by 26.08% in comparison to the control. Subgroup analyses revealed no significant difference in the effect of stem cells in new cartilage formation. However, there was a significant decline in the effect of stem cells in articular cartilage regeneration during long-term follow-up, suggesting that the duration of follow-up is a predictor of new cartilage formation. Secretome has shown a similar effect to stem cells in new cartilage formation. The risk of bias assessment showed poor reporting for most studies thereby limiting the actual risk of bias assessment. The present study suggests that both stem cells and secretome interventions improve cartilage regeneration in animal trials. Graphical abstract ᅟ.
    Matched MeSH terms: Proteome/metabolism*
  11. Low TY, Syafruddin SE, Mohtar MA, Vellaichamy A, A Rahman NS, Pung YF, et al.
    Cell Mol Life Sci, 2021 Jul;78(13):5325-5339.
    PMID: 34046695 DOI: 10.1007/s00018-021-03856-0
    Protein-protein interactions are fundamental to various aspects of cell biology with many protein complexes participating in numerous fundamental biological processes such as transcription, translation and cell cycle. MS-based proteomics techniques are routinely applied for characterising the interactome, such as affinity purification coupled to mass spectrometry that has been used to selectively enrich and identify interacting partners of a bait protein. In recent years, many orthogonal MS-based techniques and approaches have surfaced including proximity-dependent labelling of neighbouring proteins, chemical cross-linking of two interacting proteins, as well as inferring PPIs from the co-behaviour of proteins such as the co-fractionating profiles and the thermal solubility profiles of proteins. This review discusses the underlying principles, advantages, limitations and experimental considerations of these emerging techniques. In addition, a brief account on how MS-based techniques are used to investigate the structural and functional properties of protein complexes, including their topology, stoichiometry, copy number and dynamics, are discussed.
    Matched MeSH terms: Proteome/metabolism*
  12. Chew SY, Brown AJP, Lau BYC, Cheah YK, Ho KL, Sandai D, et al.
    J Biomed Sci, 2021 Jan 02;28(1):1.
    PMID: 33388061 DOI: 10.1186/s12929-020-00700-8
    BACKGROUND: Emergence of Candida glabrata, which causes potential life-threatening invasive candidiasis, has been widely associated with high morbidity and mortality. In order to cause disease in vivo, a robust and highly efficient metabolic adaptation is crucial for the survival of this fungal pathogen in human host. In fact, reprogramming of the carbon metabolism is believed to be indispensable for phagocytosed C. glabrata within glucose deprivation condition during infection.

    METHODS: In this study, the metabolic responses of C. glabrata under acetate growth condition was explored using high-throughput transcriptomic and proteomic approaches.

    RESULTS: Collectively, a total of 1482 transcripts (26.96%) and 242 proteins (24.69%) were significantly up- or down-regulated. Both transcriptome and proteome data revealed that the regulation of alternative carbon metabolism in C. glabrata resembled other fungal pathogens such as Candida albicans and Cryptococcus neoformans, with up-regulation of many proteins and transcripts from the glyoxylate cycle and gluconeogenesis, namely isocitrate lyase (ICL1), malate synthase (MLS1), phosphoenolpyruvate carboxykinase (PCK1) and fructose 1,6-biphosphatase (FBP1). In the absence of glucose, C. glabrata shifted its metabolism from glucose catabolism to anabolism of glucose intermediates from the available carbon source. This observation essentially suggests that the glyoxylate cycle and gluconeogenesis are potentially critical for the survival of phagocytosed C. glabrata within the glucose-deficient macrophages.

    CONCLUSION: Here, we presented the first global metabolic responses of C. glabrata to alternative carbon source using transcriptomic and proteomic approaches. These findings implicated that reprogramming of the alternative carbon metabolism during glucose deprivation could enhance the survival and persistence of C. glabrata within the host.

    Matched MeSH terms: Proteome/metabolism*
  13. Talei D, Valdiani A, Rafii MY, Maziah M
    PLoS One, 2014;9(11):e112907.
    PMID: 25423252 DOI: 10.1371/journal.pone.0112907
    Separation of proteins based on the physicochemical properties with different molecular weight and isoelectric points would be more accurate. In the current research, the 45-day-old seedlings were treated with 0 (control) and 12 dS m(-1) of sodium chloride in the hydroponic system. After 15 days of salt exposure, the total protein of the fresh leaves and roots was extracted and analyzed using two-dimensional electrophoresis system (2-DE). The analysis led to the detection of 32 induced proteins (19 proteins in leaf and 13 proteins in the root) as well as 12 upregulated proteins (four proteins in leaf and eight proteins in the root) in the salt-treated plants. Of the 44 detected proteins, 12 were sequenced, and three of them matched with superoxide dismutase, ascorbate peroxidase and ribulose-1, 5-bisphosphate oxygenase whereas the rest remained unknown. The three known proteins associate with plants response to environmental stresses and could represent the general stress proteins in the present study too. In addition, the proteomic feedback of different accessions of A. paniculata to salt stress can potentially be used to breed salt-tolerant varieties of the herb.
    Matched MeSH terms: Proteome/metabolism
  14. Hew CS, Gam LH
    Appl Biochem Biotechnol, 2011 Dec;165(7-8):1577-86.
    PMID: 21938418 DOI: 10.1007/s12010-011-9377-x
    Gynura procumbens (Lour.) Merr. is a traditionally used medicinal plant to decrease cholesterol level, reduce high blood pressure, control diabetics, and for treatment of cancer. In our present study, a proteomic approach was applied to study the proteome of the plant that had never analyzed before. We have identified 92 abundantly expressed proteins from the leaves of G. procumbens (Lour.) Merr. Amongst the identified proteins was miraculin, a taste-masking agent with high commercial value. Miraculin made up ∼0.1% of the total protein extracted; the finding of miraculin gave a great commercial value to G. procumbens (Lour.) Merr. as miraculin's natural source is limited while the production of recombinant miraculin faced challenges of not being able to exhibit the taste-masking effect as in the natural miraculin. We believe the discovery of miraculin in G. procumbens (Lour.) Merr., provides commercial feasibility of miraculin in view of the availability of G. procumbens (Lour.) Merr. that grow wildly and easily in tropical climate.
    Matched MeSH terms: Proteome/metabolism
  15. Seriramalu R, Pang WW, Jayapalan JJ, Mohamed E, Abdul-Rahman PS, Bustam AZ, et al.
    Electrophoresis, 2010 Jul;31(14):2388-95.
    PMID: 20575108 DOI: 10.1002/elps.201000164
    The use of lectin affinity chromatography prior to 2-DE separation forms an alternative method to unmask the expression of targeted glycoproteins of lower abundance in serum samples. Reduced expression of alpha-2 macroglobulin (AMG) and complement factor B (CFB) was detected in sera of patients with nasopharyngeal carcinoma (NPC) when pooled serum samples of the patients and those of healthy individuals were subjected to affinity isolation using immobilized champedak mannose-binding lectin and analyzed by 2-DE and densitometry. The AMG and CFB spots were not detected in the 2-DE protein profiles when the same pooled serum samples were subjected to albumin and IgG depletion and neither were they detected when the depleted samples were analyzed by western blotting and lectin detection. Together with other acute-phase response proteins that were previously reported to be altered in expression in NPC patients, AMG and CFB may serve as useful complementary biomarkers for NPC.
    Matched MeSH terms: Proteome/metabolism*
  16. Maarof M, Lokanathan Y, Ruszymah HI, Saim A, Chowdhury SR
    Protein J, 2018 12;37(6):589-607.
    PMID: 30343346 DOI: 10.1007/s10930-018-9800-z
    Growth factors and extracellular matrix (ECM) proteins are involved in wound healing. Human dermal fibroblasts secrete wound-healing mediators in culture medium known as dermal fibroblast conditioned medium (DFCM). However, the composition and concentration of the secreted proteins differ with culture conditions and environmental factors. We cultured human skin fibroblasts in vitro using serum-free keratinocyte-specific media (EpiLife™ Medium [KM1] and defined keratinocyte serum-free medium [KM2]) and serum-free fibroblast-specific medium (FM) to obtain DFCM-KM1, DFCM-KM2 and DFCM-FM, respectively. We identified and compared their proteomic profiles using bicinchoninic acid assay (BCA), 1-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis (1D SDS-PAGE), enzyme-linked immunosorbent assay (ELISA), matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry (MALDI-TOF/TOF MS/MS) and liquid chromatography MS (LC-MS/MS). DFCM-KM1 and DFCM-KM2 had higher protein concentrations than DFCM-FM but not statistically significant. MALDI-TOF/TOF MS identified the presence of fibronectin, serotransferrin, serpin and serum albumin. LC-MS/MS and bioinformatics analysis identified 59, 46 and 58 secreted proteins in DFCM-KM1, DFCM-KM2 and DFCM-FM, respectively. The most significant biological processes identified in gene ontology were cellular process, metabolic process, growth and biological regulation. STRING® analysis showed that most secretory proteins in the DFCMs were associated with biological processes (e.g. wound healing and ECM organisation), molecular function (e.g. ECM binding) and cellular component (e.g. extracellular space). ELISA confirmed the presence of fibronectin and collagen in the DFCMs. In conclusion, DFCM secretory proteins are involved in cell adhesion, attachment, proliferation and migration, which were demonstrated to have potential wound-healing effects by in vitro and in vivo studies.
    Matched MeSH terms: Proteome/metabolism*
  17. Swain N, Samanta L, Agarwal A, Kumar S, Dixit A, Gopalan B, et al.
    Antioxid Redox Signal, 2020 03 10;32(8):504-521.
    PMID: 31691576 DOI: 10.1089/ars.2019.7828
    Aims:
    To understand the molecular pathways involved in oxidative stress (OS)-mediated sperm dysfunction against a hypoxic and hyperthermic microenvironment backdrop of varicocele through a proteomic approach.
    Results:
    Protein selection (261) based on their role in redox homeostasis and/or oxidative/hyperthermic/hypoxic stress response from the sperm proteome data set of unilateral varicocele (UV) in comparison with fertile control displayed 85 to be differentially expressed. Upregulation of cellular oxidant detoxification and glutathione and reduced nicotinamide adenine dinucleotide (NADH) metabolism accompanied with downregulation of protein folding, energy metabolism, and heat stress responses were observed in the UV group. Ingenuity pathway analysis (IPA) predicted suppression of oxidative phosphorylation (OXPHOS) (validated by Western blotting [WB]) along with augmentation in OS and mitochondrial dysfunction in UV. The top affected networks indicated by IPA involved heat shock proteins (HSPs: HSPA2 and HSP90B1). Their expression profile was corroborated by immunocytochemistry and WB. Hypoxia-inducible factor 1A as an upstream regulator of HSPs was predicted by MetaCore. Occurrence of reductive stress in UV spermatozoa was corroborated by thiol redox status.
    Innovation:
    This is the first evidence of a novel pathway showing aberrant redox homeostasis against chronic hypoxic insult in varicocele leading to sperm dysfunction.
    Conclusions:
    Upregulation of antioxidant system and dysfunctional OXPHOS would have shifted the redox balance of biological redox couples (GSH/GSSG, NAD+/NADH, and NADP+/NADPH) to a more reducing state leading to reductive stress. Chronic reductive stress-induced OS may be involved in sperm dysfunction in infertile men with UV, where the role of HSPs cannot be ignored. Intervention with antioxidant therapy warrants proper prior investigation.
    Matched MeSH terms: Proteome/metabolism*
  18. Lee PY, Low TY, Jamal R
    Adv Clin Chem, 2018 12 27;88:67-89.
    PMID: 30612607 DOI: 10.1016/bs.acc.2018.10.004
    The life span of cancer patients can be prolonged with appropriate therapies if detected early. Mass screening for early detection of cancer, however, requires sensitive and specific biomarkers obtainable from body fluids such as blood or urine. To date, most biomarker discovery programs focus on the proteome rather than the endogenous peptidome. It has been long-established that tumor cells and stromal cells produce tumor resident proteases (TRPs) to remodel the surrounding tumor microenvironment in support of tumor progression. In fact, proteolytic products of TRPs have been shown to correlate with malignant behavior. Being of low molecular weight, these unique peptides can pass through the endothelial barrier of the vasculature into the bloodstream. As such, the cancer peptidome has increasingly become a focus for biomarker discovery. In this review, we discuss on the various aspects of the peptidome in cancer biomarker research.
    Matched MeSH terms: Proteome/metabolism
  19. Modahl CM, Roointan A, Rogers J, Currier K, Mackessy SP
    PMID: 32194156 DOI: 10.1016/j.cbpc.2020.108743
    The genera Ophiophagus and Naja comprise part of a clade of snakes referred to as cobras, dangerously venomous front-fanged snakes in the family Elapidae responsible for significant human mortality and morbidity throughout Asia and Africa. We evaluated venom enzyme variation for eleven cobra species and three N. kaouthia populations using SDS-PAGE venom fingerprinting and numerous enzyme assays. Acetylcholinesterase and PLA2 activities were the most variable between species, and PLA2 activity was significantly different between Malaysian and Thailand N. kaouthia populations. Venom metalloproteinase activity was low and significantly different among most species, but levels were identical for N. kaouthia populations; minor variation in venom L-amino acid oxidase and phosphodiesterase activities were seen between cobra species. Naja siamensis venom lacked the α-fibrinogenolytic activity common to other cobra venoms. In addition, venom from N. siamensis had no detectable metalloproteinase activity and exhibited an SDS-PAGE profile with reduced abundance of higher mass proteins. Venom profiles from spitting cobras (N. siamensis, N. pallida, and N. mossambica) exhibited similar reductions in higher mass proteins, suggesting the evolution of venoms of reduced complexity and decreased enzymatic activity among spitting cobras. Generally, the venom proteomes of cobras show highly abundant three-finger toxin diversity, followed by large quantities of PLA2s. However, PLA2 bands and activity were very reduced for N. haje, N. annulifera and N. nivea. Venom compositionalenzy analysis provides insight into the evolution, diversification and distribution of different venom phenotypes that complements venomic data, and this information is critical for the development of effective antivenoms and snakebite treatment.
    Matched MeSH terms: Proteome/metabolism*
  20. Liang S, Singh M, Dharmaraj S, Gam LH
    Dis Markers, 2010;29(5):231-42.
    PMID: 21206008 DOI: 10.3233/DMA-2010-0753
    Breast cancer is a leading cause of mortality in women. In Malaysia, it is the most common cancer to affect women. The most common form of breast cancer is infiltrating ductal carcinoma (IDC). A proteomic approach was undertaken to identify protein profile changes between cancerous and normal breast tissues from 18 patients. Two protein extracts; aqueous soluble and membrane associated protein extracts were studied. Thirty four differentially expressed proteins were identified. The intensities of the proteins were used as variables in PCA and reduced data of six principal components (PC) were subjected to LDA in order to evaluate the potential of these proteins as collective biomarkers for breast cancer. The protein intensities of SEC13-like 1 (isoform b) and calreticulin contributed the most to the first PC while the protein intensities of fibrinogen beta chain precursor and ATP synthase D chain contributed the most to the second PC. Transthyretin precursor and apolipoprotein A-1 precursor contributed the most to the third PC. The results of LDA indicated good classification of samples into normal and cancerous types when the first 6 PCs were used as the variables. The percentage of correct classification was 91.7% for the originally grouped tissue samples and 88.9% for cross-validated samples.
    Matched MeSH terms: Proteome/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links