Systemic candidiasis is the leading fungal bloodstream infection, and its incidence has been on the rise. Recently, Candida parapsilosis has emerged as an increasingly prevalent fungal pathogen, but little is known about its antigenic profile. Hence, the current work was performed to discover immunogenic proteins of C. parapsilosis using serological proteome analysis.
Spring viremia of carp virus (SVCV) causes the skin hemorrhagic disease in cyprinid species, but its molecular mechanism of skin immune response remains unclear at the protein level. In the present study, the differential proteomics of the zebrafish (Danio rerio) skin in response to SVCV infection were examined by isobaric tags for relative and absolute quantitation and quantitative polymerase chain reaction (qPCR) assays. A total of 3999 proteins were identified, of which 320 and 181 proteins were differentially expressed at 24 and 96 h postinfection, respectively. The expression levels of 16 selected immune-related differentially expressed proteins (DEPs) were confirmed by qPCR analysis. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that DEPs were significantly associated with complement, inflammation, and antiviral response. The protein-protein interaction network of cytoskeleton-associated proteins, ATPase-related proteins, and parvalbumins from DEPs was shown to be involved in skin immune response. This is first report on the skin proteome profiling of zebrafish against SVCV infection, which will contribute to understand the molecular mechanism of local mucosal immunity in fish.
Burkholderia cepacia is an opportunistic human pathogen associated with lung infections. Secretory proteins of B. cepacia are known to be involved in virulence and may mediate important host-pathogen interactions. In the present study, secretory proteins isolated from B. cepacia culture supernatant were separated using two-dimensional gel electrophoresis, followed by Western blot analysis to identify the immunogenic proteins. Mice antibodies raised to B. cepacia inactivated whole bacteria, outer membrane protein and culture filtrate antigen detected 74, 104 and 32 immunogenic proteins, respectively. Eighteen of these immunogenic proteins which reacted with all three antibodies were identified and might be potential molecules as a diagnostic marker or a putative candidate vaccine against B. cepacia infections.