Displaying all 2 publications

Abstract:
Sort:
  1. Abd Ghafar N, Chua KH, Wan Ngah WZ, Che Hamzah J, Othman F, Abd Rahman R, et al.
    Cell Tissue Bank, 2014 Mar;15(1):25-34.
    PMID: 23292197 DOI: 10.1007/s10561-012-9360-y
    The in vivo quiescent corneal stroma keratocytes need to be transformed to activated state in order to obtain sufficient number of cells either for monolayer evaluation or corneal stroma reconstruction. This study aimed to investigate the phenotypic characterization of corneal stromal cells during culture expansion from the limbal region of the cornea. Isolated corneal keratocytes from limbal tissue of New Zealand White Strain rabbits' corneas (n = 6) were culture expanded until three passages. Keratocytes morphology was examined daily with viability, growth rate, number of cell doubling and population doubling time were recorded at each passage. The expression of collagen type 1, aldehyde dehydrogenase (ALDH), lumican and alpha smooth muscle actin (α-SMA) were detected by RT-PCR. Immunocytochemistry was also used to detect ALDH, α-SMA, collagen type I and Cytokeratin-3 (CK3). Growth kinetic study revealed that the growth rate was low at the initial passage but increase to about two folds with concomitant reduction in population doubling time in later passages. Freshly isolated and cultured keratocytes expressed collagen type 1, ALDH and lumican but α-SMA expression was absent. However, α-SMA was expressed along with the other genes during culture expansion. Keratocytes at P1 expressed all the proteins except CK3. These results suggest that cultured keratocytes maintained most of the gene expression profile of native keratocytes while the emergence of α-SMA in serial passages showed a mix population of various phenotypes. The phenotypic characterization of monolayer keratocytes provides useful information before reconstruction of bioengineered tissue or in vitro pharmaceutical applications.
    Matched MeSH terms: Chondroitin Sulfate Proteoglycans/biosynthesis
  2. Pung YF, Chilian WM, Bennett MR, Figg N, Kamarulzaman MH
    Am J Physiol Heart Circ Physiol, 2017 Mar 01;312(3):H541-H545.
    PMID: 27986661 DOI: 10.1152/ajpheart.00653.2016
    Although there are multiple rodent models of the metabolic syndrome, very few develop vascular complications. In contrast, the JCR:LA-cp rat develops both metabolic syndrome and early atherosclerosis in predisposed areas. However, the pathology of the normal vessel wall has not been described. We examined JCR:LA control (+/+) or cp/cp rats fed normal chow diet for 6 or 18 mo. JCR:LA-cp rats developed multiple features of advanced cystic medial necrosis including "cysts," increased collagen formation and proteoglycan deposition around cysts, apoptosis of vascular smooth muscle cells, and spotty medial calcification. These appearances began within 6 mo and were extensive by 18 mo. JCR:LA-cp rats had reduced medial cellularity, increased medial thickness, and vessel hypoxia that was most marked in the adventitia. In conclusion, the normal chow-fed JCR:LA-cp rat represents a novel rodent model of cystic medial necrosis, associated with multiple metabolic abnormalities, vascular smooth muscle cell apoptosis, and vessel hypoxia.NEW & NOTEWORTHY Triggers for cystic medial necrosis (CMN) have been difficult to study due to lack of animal models to recapitulate the pathologies seen in humans. Our study is the first description of CMN in the rat. Thus the JCR:LA-cp rat represents a useful model to investigate the underlying molecular changes leading to the development of CMN.
    Matched MeSH terms: Proteoglycans/biosynthesis
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links