METHODS: The details of patients diagnosed with unresectable NSCLC treated with TKI followed by lung resection from 2010 to 2020 were retrieved from our database. The primary endpoint was 3-year overall survival (OS), whereas the secondary endpoints were a 2-year progression-free survival (PFS), feasibility, and the safety of pulmonary resection. The statistical tests used were Fisher's exact test, Kruskal Wallis test, Kaplan-Meier method, Cox proportional hazards model, and Firth correction.
RESULTS: Nineteen out of thirty-two patients were selected for the study. The patients underwent lung surgery after confirmed tumor regression (17 [89.5%]) and regrowth (two [10.5%]). All surgeries were performed via video-assisted thoracoscopic surgery: 14 (73.7%) lobectomies and five (26.3%) sublobar resections after a median duration of 5 months of TKI. Two (10.5%) postoperative complications and no 30-day postoperative mortality were observed. The median postoperative follow-up was 22 months. The 2-year PFS and 3-year OS rates were 43.9% and 61.5%, respectively. Patients who underwent surgery for regressed disease showed a significantly better OS than for regrowth disease (HR=0.086, 95% CI 0.008-0.957, p=0.046). TKI-adjuvant demonstrated a better PFS than non-TKI adjuvant (HR=0.146, 95% CI 0.027-0.782, p=0.025).
CONCLUSION: Lung surgery after TKI treatment is feasible and safe and prolongs survival via local control and directed consequential therapy. Lung surgery should be adopted in multimodality therapy for initially unresectable NSCLC.
METHODS: Treatment-naive patients with EGFR-mutated advanced NSCLC were randomized one-to-one to lazertinib (240 mg/d) or gefitinib (250 mg/d). Patients with asymptomatic or stable CNS metastases were included if any planned radiation, surgery, or steroids were completed more than 2 weeks before randomization. For patients with CNS metastases confirmed at screening or subsequently suspected, CNS imaging was performed every 6 weeks for 18 months, then every 12 weeks. End points assessed by blinded independent central review and Response Evaluation Criteria in Solid Tumors version 1.1 included intracranial progression-free survival, intracranial objective response rate, and intracranial duration of response.
RESULTS: Of the 393 patients enrolled in LASER301, 86 (lazertinib, n = 45; gefitinib, n = 41) had measurable and or non-measurable baseline CNS metastases. The median intracranial progression-free survival in the lazertinib group was 28.2 months (95% confidence interval [CI]: 14.8-28.2) versus 8.4 months (95% CI: 6.7-not reached [NR]) in the gefitinib group (hazard ratio = 0.42, 95% CI: 0.20-0.89, p = 0.02). Among patients with measurable CNS lesions, the intracranial objective response rate was numerically higher with lazertinib (94%; n = 17) versus gefitinib (73%; n = 11, p = 0.124). The median intracranial duration of response with lazertinib was NR (8.3-NR) versus 6.3 months (2.8-NR) with gefitinib. Tolerability was similar to the overall LASER301 population.
CONCLUSIONS: In patients with CNS metastases, lazertinib significantly improved intracranial progression-free survival compared with gefitinib, with more durable responses.
METHODS: Patients with CML were recruited from outpatient haematological clinics at the national centre of intervention and referral for haematological conditions and a public teaching hospital. The health-related quality of life or utility scores were derived using the EuroQol EQ-5D-5L questionnaire. Costing data were obtained from the Ministry of Health Malaysia Casemix MalaysianDRG. Imatinib and nilotinib drug costs were obtained from the administration of the participating hospitals and pharmaceutical company.
RESULTS: Of the 221 respondents in this study, 68.8% were imatinib users. The total care provider cost for CML treatment was USD23,014.40 for imatinib and USD43,442.69 for nilotinib. The governmental financial assistance programme reduced the total care provider cost to USD13,693.51 for imatinib and USD19,193.45 for nilotinib. The quality-adjusted life years (QALYs) were 17.87 and 20.91 per imatinib and nilotinib user, respectively. Nilotinib had a higher drug cost than imatinib, yet its users had better life expectancy, utility score, and QALYs. Imatinib yielded the lowest cost per QALYs at USD766.29.
CONCLUSION: Overall, imatinib is more cost-effective than nilotinib for treating CML in Malaysia from the care provider's perspective. The findings demonstrate the importance of cancer drug funding assistance for ensuring that the appropriate treatments are accessible and affordable and that patients with cancer use and benefit from such patient assistance programmes. To establish effective health expenditure, drug distribution inequality should be addressed.
METHODS: In this phase 3, international, randomized trial, we assigned in a 1:1 ratio patients with advanced NSCLC with EGFR exon 20 insertions who had not received previous systemic therapy to receive intravenous amivantamab plus chemotherapy (amivantamab-chemotherapy) or chemotherapy alone. The primary outcome was progression-free survival according to blinded independent central review. Patients in the chemotherapy group who had disease progression were allowed to cross over to receive amivantamab monotherapy.
RESULTS: A total of 308 patients underwent randomization (153 to receive amivantamab-chemotherapy and 155 to receive chemotherapy alone). Progression-free survival was significantly longer in the amivantamab-chemotherapy group than in the chemotherapy group (median, 11.4 months and 6.7 months, respectively; hazard ratio for disease progression or death, 0.40; 95% confidence interval [CI], 0.30 to 0.53; P<0.001). At 18 months, progression-free survival was reported in 31% of the patients in the amivantamab-chemotherapy group and in 3% in the chemotherapy group; a complete or partial response at data cutoff was reported in 73% and 47%, respectively (rate ratio, 1.50; 95% CI, 1.32 to 1.68; P<0.001). In the interim overall survival analysis (33% maturity), the hazard ratio for death for amivantamab-chemotherapy as compared with chemotherapy was 0.67 (95% CI, 0.42 to 1.09; P = 0.11). The predominant adverse events associated with amivantamab-chemotherapy were reversible hematologic and EGFR-related toxic effects; 7% of patients discontinued amivantamab owing to adverse reactions.
CONCLUSIONS: The use of amivantamab-chemotherapy resulted in superior efficacy as compared with chemotherapy alone as first-line treatment of patients with advanced NSCLC with EGFR exon 20 insertions. (Funded by Janssen Research and Development; PAPILLON ClinicalTrials.gov number, NCT04538664.).
RESULTS: In total, 12 different BCR::ABL1 KD mutations were identified by SS in 22.6% (19/84) of patients who were resistant to TKI treatment. Interestingly, NGS analysis of the same patient group revealed an additional four different BCR::ABL1 KD mutations in 27.4% (23/84) of patients. These mutations are M244V, A344V, E355A, and E459K with variant read frequency below 15%. No mutation was detected in 18 patients with optimal response to TKI therapy. Resistance to TKIs is associated with the acquisition of additional mutations in BCR::ABL1 KD after treatment with TKIs. Additionally, the use of NGS is advised for accurately determining the mutation status of BCR::ABL1 KD, particularly in cases where the allele frequency is low, and for identifying mutations across multiple exons simultaneously. Therefore, the utilization of NGS as a diagnostic platform for this test is very promising to guide therapeutic decision-making.
PATIENTS AND METHODS: A total of 657 patients with EGFR-mutated (exon 19 deletions or L858R) locally advanced or metastatic NSCLC after disease progression on osimertinib were randomized 2 : 2 : 1 to receive amivantamab-lazertinib-chemotherapy, chemotherapy, or amivantamab-chemotherapy. The dual primary endpoints were progression-free survival (PFS) of amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy versus chemotherapy. During the study, hematologic toxicities observed in the amivantamab-lazertinib-chemotherapy arm necessitated a regimen change to start lazertinib after carboplatin completion.
RESULTS: All baseline characteristics were well balanced across the three arms, including by history of brain metastases and prior brain radiation. PFS was significantly longer for amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy versus chemotherapy [hazard ratio (HR) for disease progression or death 0.48 and 0.44, respectively; P < 0.001 for both; median of 6.3 and 8.3 versus 4.2 months, respectively]. Consistent PFS results were seen by investigator assessment (HR for disease progression or death 0.41 and 0.38 for amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy, respectively; P < 0.001 for both; median of 8.2 and 8.3 versus 4.2 months, respectively). Objective response rate was significantly higher for amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy versus chemotherapy (64% and 63% versus 36%, respectively; P < 0.001 for both). Median intracranial PFS was 12.5 and 12.8 versus 8.3 months for amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy versus chemotherapy (HR for intracranial disease progression or death 0.55 and 0.58, respectively). Predominant adverse events (AEs) in the amivantamab-containing regimens were hematologic, EGFR-, and MET-related toxicities. Amivantamab-chemotherapy had lower rates of hematologic AEs than amivantamab-lazertinib-chemotherapy.
CONCLUSIONS: Amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy improved PFS and intracranial PFS versus chemotherapy in a population with limited options after disease progression on osimertinib. Longer follow-up is needed for the modified amivantamab-lazertinib-chemotherapy regimen.