Displaying all 13 publications

Abstract:
Sort:
  1. Abdul Ghani NA, Abdul Nasir NA, Lambuk L, Sadikan MZ, Agarwal R, Ramli N
    Graefes Arch Clin Exp Ophthalmol, 2023 Jun;261(6):1587-1596.
    PMID: 36622408 DOI: 10.1007/s00417-022-05965-3
    PURPOSE: Angiogenesis in diabetic retinopathy (DR) is associated with increased retinal expression of angiopoietin-2 (Ang-2) and protein kinase C (PKC). Tocotrienol-rich fraction (TRF) has been shown to reduce the expression vascular endothelial growth factor (VEGF) in several experimental models. However, its effect against other angiogenic markers such as Ang-2 and PKC in rat model of diabetes remains unknown. Therefore, we investigated the effect of TRF on the retinal vascular changes and Ang-2 and PKC expressions in rats with streptozotocin (STZ)-induced DR.

    METHODS: Sprague-Dawley rats were divided into normal control rats (N) which received vehicle, and diabetic rats which either received vehicle (DV) or 100 mg/kg of TRF (DT). Diabetes was induced with intraperitoneal injection of STZ (60 mg/kg body weight). Treatments were given orally, once daily, for 12 weeks after confirmation of hyperglycaemia. Fundus photographs were captured at baseline, 6- and 12-week post-STZ injection and average diameter of retinal veins and arteries were measured. At 12-week post-STZ injection, rats were euthanised, and retinae were collected for measurement of Ang-2 and PKC gene and protein expressions.

    RESULTS: Retinal venous and arterial diameters were significantly greater in DV compared to DT at week 12 post-STZ injection (p protein expressions compared to DV.

    CONCLUSION: Oral TRF reduces the expression of retinal angiogenic markers and preserves the retinal vascular diameter of rats with STZ-induced DR.

    Matched MeSH terms: Protein Kinase C/metabolism
  2. Safi SZ, Qvist R, Kumar S, Batumalaie K, Ismail IS
    Biomed Res Int, 2014;2014:801269.
    PMID: 25105142 DOI: 10.1155/2014/801269
    The growing number of people with diabetes worldwide suggests that diabetic retinopathy (DR) and diabetic macular edema (DME) will continue to be sight threatening factors. The pathogenesis of diabetic retinopathy is a widespread cause of visual impairment in the world and a range of hyperglycemia-linked pathways have been implicated in the initiation and progression of this condition. Despite understanding the polyol pathway flux, activation of protein kinase C (KPC) isoforms, increased hexosamine pathway flux, and increased advanced glycation end-product (AGE) formation, pathogenic mechanisms underlying diabetes induced vision loss are not fully understood. The purpose of this paper is to review molecular mechanisms that regulate cell survival and apoptosis of retinal cells and discuss new and exciting therapeutic targets with comparison to the old and inefficient preventive strategies. This review highlights the recent advancements in understanding hyperglycemia-induced biochemical and molecular alterations, systemic metabolic factors, and aberrant activation of signaling cascades that ultimately lead to activation of a number of transcription factors causing functional and structural damage to retinal cells. It also reviews the established interventions and emerging molecular targets to avert diabetic retinopathy and its associated risk factors.
    Matched MeSH terms: Protein Kinase C/metabolism
  3. Kuan CS, Yee YH, See Too WC, Few LL
    PLoS One, 2014;9(12):e113485.
    PMID: 25490397 DOI: 10.1371/journal.pone.0113485
    Choline kinase is the most upstream enzyme in the CDP-choline pathway. It catalyzes the phosphorylation of choline to phosphorylcholine in the presence of ATP and Mg2+ during the biosynthesis of phosphatidylcholine, the major phospholipid in eukaryotic cell membranes. In humans, choline kinase (CK) is encoded by two separate genes, ckα and ckβ, which produce three isoforms, CKα1, CKα2, and CKβ. Previous studies have associated ckβ with muscle development; however, the molecular mechanism underlying the transcriptional regulation of ckβ has never been elucidated.
    Matched MeSH terms: Protein Kinase C/metabolism*
  4. Oskoueian E, Abdullah N, Ahmad S
    Int J Mol Sci, 2012;13(11):13816-29.
    PMID: 23203036 DOI: 10.3390/ijms131113816
    The direct feeding of Jatropha meal containing phorbol esters (PEs) indicated mild to severe toxicity symptoms in various organs of different animals. However, limited information is available on cellular and molecular mechanism of toxicity caused by PEs present in Jatropha meal. Thus, the present study was conducted to determine the cytotoxic and mode of action of PEs isolated from Jatropha meal using human hepatocyte (Chang) and African green monkey kidney (Vero) cell lines. The results showed that isolated PEs inhibited cell proliferation in a dose-dependent manner in both cell lines with the CC(50) of 125.9 and 110.3 μg/mL, respectively. These values were compatible to that of phorbol 12-myristate 13-acetate (PMA) values as positive control i.e., 124.5 and 106.3 μg/mL respectively. Microscopic examination, flow cytometry and DNA fragmentation results confirmed cell death due to apoptosis upon treatment with PEs and PMA at CC(50) concentration for 24 h in both cell lines. The Western blot analysis revealed the overexpression of PKC-δ and activation of caspase-3 proteins which could be involved in the mechanism of action of PEs and PMA. Consequently, the PEs isolated form Jatropha meal caused toxicity and induced apoptosis-mediated proliferation inhibition toward Chang and Vero cell lines involving over-expression of PKC-δ and caspase-3 as their mode of actions.
    Matched MeSH terms: Protein Kinase C/metabolism
  5. Davoudi M, Vijeepallam K, Azizi H, Mirnajafi-Zadeh J, Semnanian S
    J Neural Transm (Vienna), 2019 11;126(11):1425-1435.
    PMID: 31493096 DOI: 10.1007/s00702-019-02064-2
    The locus coeruleus (LC) as a target of addictive drugs receives a dense projection of orexinergic fibres from the lateral hypothalamus (LH) and is accordingly a candidate site for the expression of the somatic aspects of morphine withdrawal. Recently it has been shown that the inhibitory synaptic currents of LC neurons decrease partly through orexin type 1 receptors in the context of naloxone-induced morphine withdrawal; however, its cellular mechanism remains unclear. In this study, whole-cell patch clamp recordings of LC neurons in brainstem slices were used to investigate the impact of protein kinase C (PKC) on GABAergic inhibitory post-synaptic currents (IPSCs) in the context of naloxone-induced morphine withdrawal. Male Wistar rats (P14-P21) received morphine (20 mg/kg, i.p.) daily for 7 consecutive days to induce morphine dependency. Our results showed that the application of PKC inhibitor (Go 6983; 1 µM) alone did not decrease the probability of GABA release in the LC neurons of the morphine-treated rats in the presence of naloxone. Although, Go 6983 reversed the reduction of the amplitude of evoked IPSCs (eIPSCs) and spontaneous IPSCs (sIPSCs) frequency induced by orexin-A but did not change the sIPSCs amplitude. These results indicate that the suppressive effect of orexin-A on IPSCs is probably reversed by PKC inhibitor in the LC neurons of morphine-treated rats in the context of naloxone withdrawal.
    Matched MeSH terms: Protein Kinase C/metabolism*
  6. Gopinath VK, Musa M, Samsudin AR, Sosroseno W
    PMID: 16997796
    The role of protein kinase C (PKC) in hydroxyapatite (HA)-induced phagocytosis by RAW 264.7 cells was investigated. The cells were incubated with HA particles at various incubation time and the levels of PKC activity were determined from the cell lysate. To determine the role of PKC, particles were incubated with the cells pretreated with the various concentrations of bisindolylmaleimide, a PKC inhibitor, and phagocytosis was then assessed at 60 min. Latex beads were used as a control. Our results showed that following incubation with HA particles, the levels of PKC activity in RAW264.7 cells was highest at 7 min and then decreased to reach the baseline levels of the controls at 30 min. Pretreatment of the cells with bisindolylmaleimide significantly reduced phagocytosis of HA particles in a dose-dependent pattern. The results of our present study suggest therefore that ingestion of HA by RAW264.7 cells may depend on PKC activity that may act in the early stages of phagocytosis.
    Matched MeSH terms: Protein Kinase C/metabolism*
  7. Zakaria ZA, Mohd Sani MH, Cheema MS, Kader AA, Kek TL, Salleh MZ
    PMID: 24555641 DOI: 10.1186/1472-6882-14-63
    Muntingia calabura (Elaecoparceae) is a medicinal plant traditionally used, particularly, by the Peruvian people to alleviate headache and cold, pain associated with gastric ulcers or to reduce the prostate gland swelling. Following the recent establishment of antinociceptive activity of M. calabura leaf, the present study was performed to further elucidate on the possible mechanisms of antinociception involved.
    Matched MeSH terms: Protein Kinase C/metabolism
  8. Mooi LY, Yew WT, Hsum YW, Soo KK, Hoon LS, Chieng YC
    Asian Pac J Cancer Prev, 2012;13(4):1177-82.
    PMID: 22799301
    Protein kinase C (PKC) has been implicated in carcinogenesis and displays variable expression profiles during cancer progression. Studies of dietary phytochemicals on cancer signalling pathway regulation have been conducted to search for potent signalling regulatory agents. The present study was designed to evaluate any suppressive effect of maslinic acid on PKC expression in human B-lymphoblastoid cells (Raji cells), and to identify the PKC isoforms expressed. Effects of maslinic acid on PKC activity were determined using a PepTag assay for non-radioactive detection of PKC. The highest expression in Raji cells was obtained at 20 nM PMA induced for 6 hours. Suppressive effects of maslinic acid were compared with those of four PKC inhibitors (H- 7, rottlerin, sphingosine, staurosporine) and two triterpenes (oleanolic acid and ursolic acid). The IC₅₀ values achieved for maslinic acid, staurosporine, H-7, sphingosine, rottlerin, ursolic acid and oleanolic acid were 11.52, 0.011, 0.767, 2.45, 5.46, 27.93 and 39.29 μM, respectively. Four PKC isoforms, PKC βI, βII, δ, and ζ, were identified in Raji cells via western blotting. Maslinic acid suppressed the expression of PKC βI, δ, and ζ in a concentration-dependent manner. These preliminary results suggest promising suppressive effects of maslinic acid on PKC activity in Raji cells. Maslinic acid could be a potent cancer chemopreventive agent that may be involved in regulating many downstream signalling pathways that are activated through PKC receptors.
    Matched MeSH terms: Protein Kinase C/metabolism*
  9. Sosroseno W, Bird PS, Seymour GJ
    Anaerobe, 2011 Oct;17(5):246-51.
    PMID: 21736946 DOI: 10.1016/j.anaerobe.2011.06.006
    Nitric oxide (NO) may play a crucial role in the pathogenesis of periodontal disease and, hence, the aim of the present study was to test the hypothesis that Aggregatibacter actinomycetemcomitans surface-associated material (SAM) stimulates inducible nitric oxide synthase (iNOS) activity and NO production by the murine macrophage cell line RAW264.7. Cells were stimulated with untreated or heat-treated A. actinomycetemcomitans SAM and with or without pre-treatment with L-N(6)-(1-Iminoethyl)-lysine (L-NIL) (an iNOS inhibitor), polymyxin B, interferon-gamma (IFN-γ) and Interleukin-4 (IL-4), IL-10, genistein [a protein tyrosine kinase (PTK) inhibitor], bisindolylmaleimide [a protein kinase C (PKC) inhibitor], bromophenacyl bromide (BPB) [a phospholipase A(2) (PLA2) inhibitor] or wortmannin [phosphatidylinositol 3-kinase (PI-3K) inhibitor]. The iNOS activity and nitrite production in the cell cultures were determined. Untreated but not heat-treated A. actinomycetemcomitans SAM-stimulated both iNOS activity and nitrite production in RAW264.7 cells. L-NIL, IL-4, IL-10, genistein, bisindolylmaleimide, or BPB, suppressed but IFN-γ enhanced both iNOS activity and nitrite production by A. actinomycetemcomitans SAM-stimulated cells. Wortmannin and polymyxin B failed to alter both iNOS activity or nitrite production by A. actinomycetemcomitans SAM treated cells. Therefore, the present study suggests that a heat-sensitive protein constituent(s) of A. actinomycetemcomitans SAM stimulates both iNOS activity and nitrite production by RAW264.7 cells in a cytokine, PTK, PKC, and PLA(2) but not PI-3K-dependent fashion.
    Matched MeSH terms: Protein Kinase C/metabolism
  10. Perimal EK, Akhtar MN, Mohamad AS, Khalid MH, Ming OH, Khalid S, et al.
    Basic Clin Pharmacol Toxicol, 2011 Mar;108(3):155-62.
    PMID: 20955360 DOI: 10.1111/j.1742-7843.2010.00635.x
    This study investigated the antinociceptive effects of zerumbone in chemical behavioural models of nociception in mice. Zerumbone given through intraperitoneal route (i.p.) produced dose-related antinociception when assessed on acetic acid-induced abdominal writhing test in mice. In addition, the i.p. administration of zerumbone exhibited significant inhibition of the neurogenic pain induced by intraplantar (i.pl.) injection of capsaicin and bradykinin. Likewise, zerumbone given by i.p. route reduced the nociception produced by i.pl. injection of glutamate and phorbol myristate acetate (PMA). The antinociception caused by zerumbone in the acetic acid test was significantly attenuated by i.p. pre-treatment of mice with l-arginine (nitric oxide precursor) and glibenclamide (ATP-sensitive K(+) channel inhibitor). However, the antinociception of zerumbone was enhanced by methylene blue (non-specific gyanylyl cyclase inhibitor). Together, these results indicate that zerumbone produces pronounced antinociception against chemical models of nociception in mice. It also strongly suggests that the l-arginine-nitric oxide-cGMP-PKC-K(+) ATP channel pathways, the TRPV1 and kinin B2 receptors play an important role in the zerumbone-induced antinociception.
    Matched MeSH terms: Protein Kinase C/metabolism*
  11. Abu Bakar MH, Cheng KK, Sarmidi MR, Yaakob H, Huri HZ
    Molecules, 2015 May 07;20(5):8242-69.
    PMID: 25961164 DOI: 10.3390/molecules20058242
    Mitochondrial dysfunction and inflammation are widely accepted as key hallmarks of obesity-induced skeletal muscle insulin resistance. The aim of the present study was to evaluate the functional roles of an anti-inflammatory compound, celastrol, in mitochondrial dysfunction and insulin resistance induced by antimycin A (AMA) in human skeletal muscle cells. We found that celastrol treatment improved insulin-stimulated glucose uptake activity of AMA-treated cells, apparently via PI3K/Akt pathways, with significant enhancement of mitochondrial activities. Furthermore, celastrol prevented increased levels of cellular oxidative damage where the production of several pro-inflammatory cytokines in cultures cells was greatly reduced. Celastrol significantly increased protein phosphorylation of insulin signaling cascades with amplified expression of AMPK protein and attenuated NF-κB and PKC θ activation in human skeletal muscle treated with AMA. The improvement of insulin signaling pathways by celastrol was also accompanied by augmented GLUT4 protein expression. Taken together, these results suggest that celastrol may be advocated for use as a potential therapeutic molecule to protect against mitochondrial dysfunction-induced insulin resistance in human skeletal muscle cells.
    Matched MeSH terms: Protein Kinase C/metabolism
  12. Alawieyah Syed Mortadza S, Sim JA, Neubrand VE, Jiang LH
    Glia, 2018 03;66(3):562-575.
    PMID: 29143372 DOI: 10.1002/glia.23265
    Amyloid β (Aβ)-induced neuroinflammation plays an important part in Alzheimer's disease (AD). Emerging evidence supports a role for the transient receptor potential melastatin-related 2 (TRPM2) channel in Aβ-induced neuroinflammation, but how Aβ induces TRPM2 channel activation and this relates to neuroinflammation remained poorly understood. We investigated the mechanisms by which Aβ42 activates the TRPM2 channel in microglial cells and the relationships to microglial activation and generation of tumor necrosis factor-α (TNF-α), a key cytokine implicated in AD. Exposure to 10-300 nM Aβ42 induced concentration-dependent microglial activation and generation of TNF-α that were ablated by genetically deleting (TRPM2 knockout ;TRPM2-KO) or pharmacologically inhibiting the TRPM2 channel, revealing a critical role of this channel in Aβ42 -induced microglial activation and generation of TNF-α. Mechanistically, Aβ42 activated the TRPM2 channel via stimulating generation of reactive oxygen species (ROS) and activation of poly(ADPR) polymerase-1 (PARP-1). Aβ42 -induced generation of ROS and activation of PARP-1 and TRPM2 channel were suppressed by inhibiting protein kinase C (PKC) and NADPH oxidases (NOX). Aβ42 -induced activation of PARP-1 and TRPM2 channel was also reduced by inhibiting PYK2 and MEK/ERK. Aβ42 -induced activation of PARP-1 was attenuated by TRPM2-KO and moreover, the remaining PARP-1 activity was eliminated by inhibiting PKC and NOX, but not PYK2 and MEK/ERK. Collectively, our results suggest that PKC/NOX-mediated generation of ROS and subsequent activation of PARP-1 play a role in Aβ42 -induced TRPM2 channel activation and TRPM2-dependent activation of the PYK2/MEK/ERK signalling pathway acts as a positive feedback to further facilitate activation of PARP-1 and TRPM2 channel. These findings provide novel insights into the mechanisms underlying Aβ-induced AD-related neuroinflammation.
    Matched MeSH terms: Protein Kinase C/metabolism
  13. Khalid MH, Akhtar MN, Mohamad AS, Perimal EK, Akira A, Israf DA, et al.
    J Ethnopharmacol, 2011 Sep 01;137(1):345-51.
    PMID: 21664960 DOI: 10.1016/j.jep.2011.05.043
    ETHNOPHARMACOLOGICAL RELEVANCE: Zingiber zerumbet (L.) Smith, a wild edible ginger species or locally known as "lempoyang", commonly used in the Malays traditional medicine as an appetizer or to treat stomachache, toothache, muscle sprain and as a cure for swelling sores and cuts.

    AIM: The present study was conducted to investigate the possible mechanism of actions underlying the systemic antinociception activity of the essential oil of Zingiber zerumbet (EOZZ) in chemical-induced nociception tests in mice.

    MATERIALS AND METHODS: Acetic acid-induced abdominal constriction, capsaicin-, glutamate- and phorbol 12-myristate 13-acetate-induced paw licking tests in mice were employed in the study. In all experiments, EOZZ was administered systemically at the doses of 50, 100, 200 and 300 mg/kg.

    RESULTS: It was shown that EOZZ given to mice via intraperitoneal and oral routes at 50, 100, 200 and 300 mg/kg produced significant dose dependent antinociception when assessed using acetic acid-induced abdominal writing test with calculated mean ID(50) values of 88.84 mg/kg (80.88-97.57 mg/kg) and 118.8 mg/kg (102.5-137.8 mg/kg), respectively. Likewise, intraperitoneal administration of EOZZ at similar doses produced significant dose dependent inhibition of neurogenic pain induced by intraplantar injection of capsaicin (1.6 μg/paw), glutamate (10 μmol/paw) and phorbol 12-myristate 13-acetate (1.6μg/paw) with calculated mean ID(50) of 128.8 mg/kg (118.6-139.9 mg/kg), 124.8 mg/kg (111.4-139.7 mg/kg) and 40.29 (35.39-45.86) mg/kg, respectively. It was also demonstrated that pretreatment with l-arginine (100mg/kg, i.p.), a nitric oxide precursor significantly reversed antinociception produced by EOZZ suggesting the involvement of l-arginine/nitric oxide pathway. In addition, methylene blue (20mg/kg, i.p.) significantly enhanced antinociception produced by EOZZ. Administration of glibenclamide (10mg/kg, i.p.), an ATP-sensitive K(+) channel antagonist significantly reversed antinociceptive activity induced by EOZZ.

    CONCLUSION: Together, the present results suggested that EOZZ-induced antinociceptive activity was possibly related to its ability to inhibit glutamatergic system, TRPV1 receptors as well as through activation of l-arginine/nitric oxide/cGMP/protein kinase C/ATP-sensitive K(+) channel pathway.

    Matched MeSH terms: Protein Kinase C/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links