Displaying publications 1 - 20 of 52 in total

Abstract:
Sort:
  1. Chua LS, Abdullah FI, Lim TK, Lin Q
    Food Chem, 2024 Jan 30;432:137261.
    PMID: 37651783 DOI: 10.1016/j.foodchem.2023.137261
    This study was aimed to extract bioactive peptides from the white and purple flower varieties of Orthosiphon aristatus leaves. The herb is well known for its pharmacological importance, possibly attributed to its plant proteins. Phenol based extraction was used to extract plant proteins, and then hydrolysed by proteolytic enzymes such as trypsin (serine protease) and pepsin (aspartic protease). MS/MS analysis revealed that 145 and 125 proteins were detected from the white and purple flower varieties, respectively. Trypsin hydrolysates were showed to have a higher degree of hydrolysis (24-33%), resulting in higher antioxidant and antibacterial activities. The white flower of trypsin hydrolysates showed a higher radical scavenging activity which could be attributed to its higher content of stress proteins (19%). However, trypsin hydrolysates from the purple flower showed higher ferric reducing power and bacterial growth inhibition. The performance of hydrolysates was better than ampicillin in inhibiting Acinetobacter baumanni and Staphylococcus aureus.
    Matched MeSH terms: Protein Hydrolysates*
  2. Cheong CW, Lee YS, Ahmad SA, Ooi PT, Phang LY
    Waste Manag, 2018 Sep;79:658-666.
    PMID: 30343798 DOI: 10.1016/j.wasman.2018.08.029
    A huge amount of feathers is generated as a waste every year. Feathers can be a protein source if it is treated with an appropriate method. The present study investigates feasibility of autoclave alkaline and microwave alkaline pretreatments to be combined with enzymatic treatment for feather solubilization and protein production. Hydrolysis of chicken feather by autoclave alkaline pretreatment followed by an enzymatic method (AAS) or microwave alkaline pretreatment followed by an enzymatic method (MAS) was optimized by response surface methodology. Various NaOH concentrations for autoclave alkaline pretreatment (0.01-0.1 M) and microwave-alkaline pretreatment (0.01-0.05 M) were applied. The holding time for both pretreatments ranged from 1 to 10 min. The pretreated feathers were subjected to enzymatic hydrolysis using a commercial enzyme prior to analysis of protein content, feather solubilization, functional groups, and elemental composition (carbon, hydrogen, nitrogen and sulfur) of the treated feathers. The results revealed that both autoclave alkaline pretreatment and microwave alkaline pretreatment under optimized conditions of 0.068 M NaOH, 2 min holding time, 105 °C and 450 W, 0.05 M NaOH for 10 min, respectively, enhanced the subsequent Savinase hydrolysis of chicken feathers to achieve more than 80% degradation and more than 70% protein recovery. Fourier transform infrared spectroscopy results showed that both thermal-alkaline pretreatments weakened the structure of the feather. Reduction of carbon, nitrogen, and sulfur occurred in both thermal-alkaline pretreatments of feathers indicating degradation of the feather as well as protein release. Thermal-alkaline pretreatment may be a promising method for enhancing the enzymatic hydrolysis of chicken feathers and for producing a protein-rich hydrolysate.
    Matched MeSH terms: Protein Hydrolysates
  3. Shah SSM, Luthfi AAI, Low KO, Harun S, Manaf SFA, Illias RM, et al.
    Sci Rep, 2019 03 11;9(1):4080.
    PMID: 30858467 DOI: 10.1038/s41598-019-40807-z
    Kenaf (Hibiscus cannabinus L.), a potential fibre crop with a desirably high growth rate, could serve as a sustainable feedstock in the production of xylitol. In this work, the extraction of soluble products of kenaf through dilute nitric-acid hydrolysis was elucidated with respect to three parameters, namely temperature, residence time, and acid concentration. The study will assist in evaluating the performance in terms of xylose recovery. The result point out that the maximum xylose yield of 30.7 g per 100 g of dry kenaf was attained from 2% (v/v) HNO3 at 130 °C for 60 min. The detoxified hydrolysate was incorporated as the primary carbon source for subsequent fermentation by recombinant Escherichia coli and the performance of strain on five different semi-synthetic media on xylitol production were evaluated herein. Among these media, batch cultivation in a basal salt medium (BSM) afforded the highest xylitol yield of 0.35 g/g based on xylose consumption, which corresponded to 92.8% substrate utilization after 38 h. Subsequently, fermentation by E. coli in the xylose-based kenaf hydrolysate supplemented with BSM resulting in 6.8 g/L xylitol which corresponding to xylitol yield of 0.38 g/g. These findings suggested that the use of kenaf as the fermentation feedstock could be advantageous for the development of sustainable xylitol production.
    Matched MeSH terms: Protein Hydrolysates/biosynthesis; Protein Hydrolysates/metabolism*; Protein Hydrolysates/chemistry
  4. Shavandi A, Hu Z, Teh S, Zhao J, Carne A, Bekhit A, et al.
    Food Chem, 2017 Jul 15;227:194-201.
    PMID: 28274422 DOI: 10.1016/j.foodchem.2017.01.099
    Squid pens were subjected to alkali hydrolysis to extract chitin and chitosan. Proteins present in the alkaline extraction wastewater were recovered at pH 3, 4, 5 and 6, and were subjected to hydrolysis by trypsin, pepsin and a bacterial protease called HT for 1, 2, 4 and 24h. Hydrolysis of the extracted proteins with either trypsin or HT generated more antioxidant activity than hydrolysis with pepsin. Higher ACE-inhibitory activity was generated in the trypsin and pepsin hydrolysates than in the HT hydrolysate. Squid pen protein recovered from chitosan processing waste alkaline solution can be a potential source of bioactive peptides for addition to foods. The antioxidant and ACE-inhibitory activities of the extracted proteins were initially low and increased upon incubation with the proteases. Pepsin generated significantly lower (P<0.05) antioxidant activities compared to trypsin and HT, while trypsin and pepsin hydrolysates exhibited higher ACE-inhibitory activity than HT (P<0.05).
    Matched MeSH terms: Protein Hydrolysates/chemistry*
  5. Tan YN, Ayob MK, Wan Yaacob WA
    Food Chem, 2013 Jan 1;136(1):279-84.
    PMID: 23017424 DOI: 10.1016/j.foodchem.2012.08.012
    Palm kernel cake (PKC), the most useful by-product resulted from palm kernel oil production. In this study, PKC-derived protein product was found suitable for use as an antimicrobial agent with potent antibacterial activity, particularly against Bacillus species, after enzymatic hydrolysis with alcalase. The hydrolysate was further purified by gel filtration chromatography. The purified fraction was found to have 14.63±0.70% (w/w) protein, a molecular mass of 2.4kDa and low hemolytic activity (<50% hemolysis of human erythrocytes at concentration of 1000μg/ml). The presence of lysine and the major component lauric acid derivative, as indicated by electrospray ionisation-mass spectrometry (ESI-MS) direct infusion and nuclear magnetic resonance (NMR) spectroscopy, may have contributed to the antibacterial effect of purified PKC fraction. This study suggests that the antibacterial PKC compound may be not a pure peptide but instead a peptide-containing compound high in lauric acid derivative.
    Matched MeSH terms: Protein Hydrolysates/isolation & purification*; Protein Hydrolysates/pharmacology; Protein Hydrolysates/chemistry*
  6. Roslan, J., Mustapa Kamal, S.M., Md. Yunos, K.F., Abdullah, N.
    MyJurnal
    Fish protein hydrolysate was recovered from tilapia by-product (TB) through enzymatic hydrolysis using alcalase enzyme. Hydrolysis reaction of TB was monitored according to the degree of hydrolysis (DH) by employing O-phtaldialdehyde (OPA) method. Optimization process for obtaining high yield of TB protein hydrolysate was performed using response surface methodology (RSM) by optimizing a combination of four independent variables namely, pH (6.5-8.5), temperature (55-70oC), substrate concentration (10-17.5% w/v), and enzyme concentration (1.5-3.5% w/w) with (DH) as a response. The optimum enzymatic hydrolysis conditions were obtained at pH 7.5, temperature of 60oC, substrate concentration of 15% (w/v) and 2.5% (w/w) of enzyme concentration and yielded about 20.20% of DH after hydrolyzing for 120 min. RSM generated model predicted that 20.42% of DH could be achieved at these conditions and this model was valid based on the DH value obtained from the experimental study (20.31%) which was quite similar with the predicted value. High yield of DH obtained from the optimization process could produce fish protein hydrolysate with good nutritional and functional properties.
    Matched MeSH terms: Protein Hydrolysates
  7. Foong LC, Imam MU, Ismail M
    J Agric Food Chem, 2015 Oct 21;63(41):9029-36.
    PMID: 26435326 DOI: 10.1021/acs.jafc.5b03420
    The present study was aimed at utilizing defatted rice bran (DRB) protein as an iron-binding peptide to enhance iron uptake in humans. DRB samples were treated with Alcalase and Flavourzyme, and the total extractable peptides were determined. Furthermore, the iron-binding capacities of the DRB protein hydrolysates were determined, whereas iron bioavailability studies were conducted using an in vitro digestion and absorption model (Caco-2 cells). The results showed that the DRB protein hydrolysates produced by combined Alcalase and Flavourzyme hydrolysis had the best iron-binding capacity (83%) after 90 min of hydrolysis. The optimal hydrolysis time to produce the best iron-uptake in Caco-2 cells was found to be 180 min. The results suggested that DRB protein hydrolysates have potent iron-binding capacities and may enhance the bioavailability of iron, hence their suitability for use as iron-fortified supplements.
    Matched MeSH terms: Protein Hydrolysates/metabolism; Protein Hydrolysates/chemistry
  8. Vandenplas Y, Latiff AHA, Fleischer DM, Gutiérrez-Castrellón P, Miqdady MS, Smith PK, et al.
    Nutrition, 2019 01;57:268-274.
    PMID: 30223233 DOI: 10.1016/j.nut.2018.05.018
    OBJECTIVES: Guidance and evidence supporting routine use of partially hydrolyzed formula (pHF) versus intact cows' milk protein (CMP) formula are limited in non-exclusively breastfed infants. The aim of this review was to better clarify issues of routine use of pHF in non-exclusively breastfed infants who are not at risk for allergic disease by using a systematic review and Delphi Panel consensus.

    METHODS: A systematic review and Delphi consensus panel (consisting of eight8 international pediatric allergists and gastroenterologists) was conducted to evaluate evidence supporting growth, tolerability, and effectiveness of pHF in non-exclusively breastfed infants.

    RESULTS: None of the studies reviewed identified potential harm of pHF use compared with CMP in non-exclusively breastfed infants. There was an expert consensus that pHF use is likely as safe as intact CMP formula, given studies suggesting these have comparable nutritional parameters. No high-quality studies were identified evaluating the use of pHF to prevent allergic disease in non-exclusively breastfed infants who are not at risk for allergic disease (e.g., lacking a parental history of allergy). Limited data suggest that pHF use in non-exclusively breastfed infants may be associated with improved gastric emptying, decreased colic incidence, and other common functional gastrointestinal symptoms compared with CMP. However, because the data are of insufficient quality, the findings from these studies have to be taken with caution. No studies were identified that directly compared the different types of pHF, but there was an expert consensus that growth, allergenicity, tolerability, effectiveness, and clinical role among such pHF products may differ.

    CONCLUSIONS: Limited data exist evaluating routine use of pHFs in non-exclusively breastfed infants, with no contraindications identified in the systematic review. An expert consensus considers pHFs for which data were available to be as safe as CMP formula as growth is normal. The preventive effect on allergy of pHF in infants who are not at risk for allergic disease has been poorly studied. Cost of pHF versus starter formula with intact protein differs from country to country. However, further studies in larger populations are needed to clinically confirm the benefits of routine use of pHF in non-exclusively breastfed infants. These studies should also address potential consumer preference bias.

    Matched MeSH terms: Protein Hydrolysates/adverse effects; Protein Hydrolysates/pharmacology*
  9. Hau EH, Teh SS, Yeo SK, Mah SH
    J Sci Food Agric, 2022 Jan 15;102(1):233-240.
    PMID: 34081335 DOI: 10.1002/jsfa.11350
    BACKGROUND: The oil palm tree produces 90% of wastes and the limited usage of these wastes causes a major disposal problem in the mills. Nevertheless, these by-products have a large amount of nutritional components. Thus, the present study aimed to determine the physicochemical and functional properties of protein hydrolysates (PH) from oil palm leaves (OPL) extracted using different concentrations of Alcalase (0-10%) at 2 h of hydrolysis time.

    RESULTS: Fourier transform infrared spectral analyses showed that the enzymatic hydrolysis altered functional groups of OPL where a secondary amine was present in the PH. Changes were also observed in the thermal stability where the enthalpy heat obtained for PH (933.93-1142.57 J g-1 ) was much lower than OPL (7854.11 J g-1 ). The results showed that the PH extracted by 8% Alcalase exhibited absolute zeta potential, as well as a high emulsifying activity index (70.64 m2  g-1 of protein) and emulsion stability index (60.58 min). Furthermore, this PH showed higher solubility (96.32%) and emulsifying properties compared to other PHs. It is also comparable with commercial plant proteins, indicating that 8% Alcalase is an optimum concentration for hydrolysis.

    CONCLUSION: In summary, the physicochemical and functional properties of PH extracted from OPL showed good functional properties, suggesting that it can be used as an alternative plant protein in food industries. © 2021 Society of Chemical Industry.

    Matched MeSH terms: Protein Hydrolysates/isolation & purification; Protein Hydrolysates/chemistry
  10. Ghassem M, Arihara K, Mohammadi S, Sani NA, Babji AS
    Food Funct, 2017 May 24;8(5):2046-2052.
    PMID: 28497137 DOI: 10.1039/c6fo01615d
    Edible bird's nest (EBN) is widely consumed as a delicacy and traditional medicine amongst the Chinese. In the present study, for the first time, the antioxidant properties of an EBN pepsin-trypsin hydrolysate of the swiftlet species Aerodramus fuciphagus and its ultrafiltration fractions were investigated. Thirteen peptides with molecular weights between 514.29 and 954.52 Da were identified in the EBN fraction with the use of mass spectrometry. Two novel pentapeptides Pro-Phe-His-Pro-Tyr and Leu-Leu-Gly-Asp-Pro, corresponding to f134-138 and f164-168 of cytochrome b of A. fuciphagus, indicated the highest ORAC values of 14.95 and 14.32 μM of TE μM(-1) peptide, respectively. Both purified peptides showed resistance against simulated gastrointestinal proteases. In addition, both peptides had no in vitro cytotoxicity on human lung MRC-5 cells and prevented human liver carcinoma HepG2 cellular damage caused by hydroxyl radicals. Therefore, it is suggested that EBN protein hydrolysates are a good source of natural antioxidants and could be applied as nutraceutical compounds.
    Matched MeSH terms: Protein Hydrolysates/pharmacology; Protein Hydrolysates/chemistry*
  11. Laosam P, Panpipat W, Yusakul G, Cheong LZ, Chaijan M
    PLoS One, 2021;16(10):e0258445.
    PMID: 34695136 DOI: 10.1371/journal.pone.0258445
    The production of bioactive peptides from animal-based raw materials highly depends on enzymatic hydrolysis. Porcine placenta is an underutilized biomass in Thailand's pig farms, yet it is still a source of proteins and beneficial compounds. Porcine placenta could be used as a protein substrate for the production of enzymatic hydrolysate, which could be employed as a functional food ingredient in the future. The goal of this study was to enzymatically produce porcine placenta hydrolysates (PPH) using three commercial enzymes (Alcalase, Flavouzyme, and papain) and evaluate their in vitro antioxidant and antibacterial activity. The degree of hydrolysis (DH) increased as the enzyme load and hydrolysis time increased, but the DH was governed by the enzyme class. The maximum DH was found after using 10% enzyme for 20 min of hydrolysis (36.60%, 31.40%, and 29.81% for Alcalase, Flavouzyme, and papain). Depending on the enzyme type and DH, peptides of various sizes (0.40-323.56 kDa) were detected in all PPH. PPH created with Alcalase had an excellent reducing capacity and metal chelating ability (p < 0.05), whereas PPH made with Flavourzyme and Papain had higher DPPH• and ABTS•+ inhibitory activities (p < 0.05). Papain-derived PPH also had a strong antibacterial effect against Staphylococcus aureus and Escherichia coli, with clear zone values of 17.20 mm and 14.00 mm, respectively (p < 0.05). When PPH was transported via a gastrointestinal tract model system, its antioxidative characteristics were altered. PPH's properties and bioactivities were thus influenced by the enzyme type, enzyme concentration, and hydrolysis time used. Therefore, PPH produced from porcine placenta can be categorized as an antioxidant and antibacterial alternative.
    Matched MeSH terms: Protein Hydrolysates/pharmacology; Protein Hydrolysates/chemistry
  12. Yea CS, Ebrahimpour A, Hamid AA, Bakar J, Muhammad K, Saari N
    Food Funct, 2014 May;5(5):1007-16.
    PMID: 24658538 DOI: 10.1039/c3fo60667h
    Hypertension is one of the major causes of cardiovascular-related diseases, which is highly associated with angiotensin-I-converting enzyme (ACE) activity and oxidative stress. In this study, winged bean seed (WBS), a potential source of protein, was utilised for the production of bifunctional proteolysate and biopeptides with ACE inhibitory and antioxidative properties. An enzymatic approach was applied, coupled with pretreatment of shaking and centrifuging techniques to remove endogenous ACE inhibitors prior to proteolysis. ACE inhibition reached its highest activity, 78.5%, after 12 h proteolysis while antioxidative activities, determined using assays involving DPPH˙ radical scavenging activity and metal ion-chelating activity, reached peaks of 65.0% and 65.7% at 8 h and 14 h, respectively. The said bioactivities were proposed to share some common structural requirements among peptides. A two-dimensional approach was employed for characterisation of effective peptides based on hydrophobicity, using RP-HPLC, and isoelectric property, using isoelectric focusing technique. Results revealed that acidic and basic peptides with partially higher hydrophobicity provided higher ACE inhibition activity than did neutral peptides. Finally, by using Q-TOF mass spectrometry, two peptide sequences (YPNQKV and FDIRA) with ACE inhibitory and antioxidative activities were successfully matched with a database. This study indicates that the WBS proteolysate can be a potential bifunctional food ingredient as the identified biopeptides demonstrated both ACE inhibitory and antioxidative activities in vitro.
    Matched MeSH terms: Protein Hydrolysates/isolation & purification; Protein Hydrolysates/chemistry
  13. Zepeda-Ortega B, Goh A, Xepapadaki P, Sprikkelman A, Nicolaou N, Hernandez REH, et al.
    Front Immunol, 2021;12:608372.
    PMID: 34177882 DOI: 10.3389/fimmu.2021.608372
    The prevalence of food allergy has increased over the last 20-30 years, including cow milk allergy (CMA) which is one of the most common causes of infant food allergy. International allergy experts met in 2019 to discuss broad topics in allergy prevention and management of CMA including current challenges and future opportunities. The highlights of the meeting combined with recently published developments are presented here. Primary prevention of CMA should start from pre-pregnancy with a focus on a healthy lifestyle and food diversity to ensure adequate transfer of inhibitory IgG- allergen immune complexes across the placenta especially in mothers with a history of allergic diseases and planned c-section delivery. For non-breastfed infants, there is controversy about the preventive role of partially hydrolyzed formulae (pHF) despite some evidence of health economic benefits among those with a family history of allergy. Clinical management of CMA consists of secondary prevention with a focus on the development of early oral tolerance. The use of extensive Hydrolysate Formulae (eHF) is the nutrition of choice for the majority of non-breastfed infants with CMA; potentially with pre-, probiotics and LCPUFA to support early oral tolerance induction. Future opportunities are, among others, pre- and probiotics supplementation for mothers and high-risk infants for the primary prevention of CMA. A controlled prospective study implementing a step-down milk formulae ladder with various degrees of hydrolysate is proposed for food challenges and early development of oral tolerance. This provides a more precise gradation of milk protein exposure than those currently recommended.
    Matched MeSH terms: Protein Hydrolysates/administration & dosage; Protein Hydrolysates/chemistry
  14. Sadegh Vishkaei M, Ebrahimpour A, Abdul-Hamid A, Ismail A, Saari N
    Mar Drugs, 2016 Sep 30;14(10).
    PMID: 27706040
    Food protein hydrolysates are known to exhibit angiotensin converting enzyme (ACE) inhibitory properties and can be used as a novel functional food for prevention of hypertension. This study evaluated the ACE inhibitory potentials of Actinopyga lecanora proteolysate (ALP) in vivo. The pre-fed rats with ALP at various doses (200, 400, 800 mg/kg body weight) exhibited a significant (p ≤ 0.05) suppression effect after inducing hypertension. To determine the optimum effective dose that will produce maximal reduction in blood pressure, ALP at three doses was fed to the rats after inducing hypertension. The results showed that the 800 mg/kg body weight dose significantly reduced blood pressure without noticeable negative physiological effect. In addition, there were no observable changes in the rats' heart rate after oral administration of the ALP. It was concluded that Actinopyga lecanora proteolysate could potentially be used for the development of functional foods and nutraceuticals for prevention and treatment of hypertension.
    Matched MeSH terms: Protein Hydrolysates/pharmacology*; Protein Hydrolysates/chemistry*
  15. Auwal SM, Zainal Abidin N, Zarei M, Tan CP, Saari N
    PLoS One, 2019;14(5):e0197644.
    PMID: 31145747 DOI: 10.1371/journal.pone.0197644
    Stone fish is an under-utilized sea cucumber with many health benefits. Hydrolysates with strong ACE-inhibitory effects were generated from stone fish protein under the optimum conditions of hydrolysis using bromelain and fractionated based on hydrophobicity and isoelectric properties of the constituent peptides. Five novel peptide sequences with molecular weight (mw) < 1000 daltons (Da) were identified using LC-MS/MS. The peptides including Ala-Leu-Gly-Pro-Gln-Phe-Tyr (794.44 Da), Lys-Val-Pro-Pro-Lys-Ala (638.88 Da), Leu-Ala-Pro-Pro-Thr-Met (628.85 Da), Glu-Val-Leu-Ile-Gln (600.77 Da) and Glu-His-Pro-Val-Leu (593.74 Da) were evaluated for ACE-inhibitory activity and showed IC50 values of 0.012 mM, 0.980 mM, 1.310 mM, 1.440 mM and 1.680 mM, respectively. The ACE-inhibitory effects of the peptides were further verified using molecular docking study. The docking results demonstrated that the peptides exhibit their effect mainly via hydrogen and electrostatic bond interactions with ACE. These findings provide evidence about stone fish as a valuable source of raw materials for the manufacture of antihypertensive peptides that can be incorporated to enhance therapeutic relevance and commercial significance of formulated functional foods.
    Matched MeSH terms: Protein Hydrolysates/pharmacology*; Protein Hydrolysates/chemistry*
  16. Haniffa MA, Sheela PA, Kavitha K, Jais AM
    Asian Pac J Trop Biomed, 2014 May;4(Suppl 1):S8-S15.
    PMID: 25183152 DOI: 10.12980/APJTB.4.2014C1015
    Murrel namely Channa striatus or haruan contains all essential elements to maintain good health and to recover the lost energy after prolonged illness. The fatty acid composition (% of total fatty acid) indicated the abundant presence of C16:0 fatty acid as 30% and the other major fatty acids were C22:6 (15%), C20:4 (19%), C18:1 (12%) and C18:0 (15%). Haruan contains arachidonic acid (C20:4) as 19.0%, a precursor for prostaglandin and thromboxane biosyntheses. Both fatty and amino acids are important components for wound healing processes. Both the fillet and mucus extracts of haruan were found to exhibit a concentration dependent antinociceptive activity. In vitro antioxidant activity was higher in Channa roe protein hydrolysate than in Labeo roe protein hydrolysate in both DPPH radical scavenging and ferric reducing power. Protein content of roe concentrates (RPC) was found to be 90.2% (Channa) and 82.5% (Lates). Water absorption, oil absorption, foam capacity, stability and emulsifying capacity were found to be higher in Channa RPC than in Lates RPC. Characterization of protein hydrolysates from muscle and myofibrillar samples of haruan showed different kinetic and proteolytic activities. The skin extract of haruan influences the serotonergic receptor system thus they can function as an anti-depressant. Thus, haruan is the best example for food as medicine.
    Matched MeSH terms: Protein Hydrolysates
  17. Hau, E.H., Amiza, M.A., Zainol, M.K., Mohd Zin, Z.
    MyJurnal
    This study aimed to determine the best parameters (types of buffer, hydrolysis time and enzyme concentration) used to produce good quality of liquid protein hydrolysate from Yellowstripe scad in terms of high yield, protein content and concentration. The choice of buffer (sodium or potassium buffer), hydrolysis time (1 h, 2 h, 3 h or 4 h) and enzymes concentrations (0.5%, 1.0%, 1.5% and 2.0%) were investigated. The results obtained from two way ANOVA showed that these parameters had significant difference (p
    Matched MeSH terms: Protein Hydrolysates
  18. Chai TT, Ee KY, Kumar DT, Manan FA, Wong FC
    Protein Pept Lett, 2021;28(6):623-642.
    PMID: 33319654 DOI: 10.2174/0929866527999201211195936
    Large numbers of bioactive peptides with potential applications in protecting against human diseases have been identified from plant sources. In this review, we summarized recent progress in the research of plant-derived bioactive peptides, encompassing their production, biological effects, and mechanisms. This review focuses on antioxidant, antimicrobial, antidiabetic, and anticancer peptides, giving special attention to evidence derived from cellular and animal models. Studies investigating peptides with known sequences and well-characterized peptidic fractions or protein hydrolysates will be discussed. The use of molecular docking tools to elucidate inter-molecular interactions between bioactive peptides and target proteins is highlighted. In conclusion, the accumulating evidence from in silico, in vitro and in vivo studies to date supports the envisioned applications of plant peptides as natural antioxidants as well as health-promoting agents. Notwithstanding, much work is still required before the envisioned applications of plant peptides can be realized. To this end, future researches for addressing current gaps were proposed.
    Matched MeSH terms: Protein Hydrolysates
  19. Baba WN, Mudgil P, Baby B, Vijayan R, Gan CY, Maqsood S
    J Dairy Sci, 2021 Jul;104(7):7393-7405.
    PMID: 33934858 DOI: 10.3168/jds.2020-19868
    Novel antihypercholesterolemic bioactive peptides (BAP) from peptic camel whey protein hydrolysates (CWPH) were generated at different time, temperature, and enzyme concentration (%). Hydrolysates showed higher pancreatic lipase- (PL; except 3 CWPH) and cholesterol esterase (CE)-inhibiting potential, as depicted by lower half-maximal inhibitory concentration values (IC50 values) compared with nonhydrolyzed camel whey proteins (CWP). Peptide sequencing and in silico data depicted that most BAP from CWPH could bind active site of PL, whereas as only 3 peptides could bind the active site of CE. Based on higher number of reactive residues in the BAP and greater number of substrate binding sites, FCCLGPVPP was identified as a potential CE-inhibitory peptide, and PAGNFLPPVAAAPVM, MLPLMLPFTMGY, and LRFPL were identified as PL inhibitors. Molecular docking of selected peptides showed hydrophilic and hydrophobic interactions between peptides and target enzymes. Thus, peptides derived from CWPH warrant further investigation as potential candidates for adjunct therapy for hypercholesterolemia.
    Matched MeSH terms: Protein Hydrolysates
  20. Mudgil P, Baba WN, Kamal H, FitzGerald RJ, Hassan HM, Ayoub MA, et al.
    Food Chem, 2022 Jan 15;367:130661.
    PMID: 34348197 DOI: 10.1016/j.foodchem.2021.130661
    Cow (CwC) and camel casein (CaC) hydrolysates were generated using Alcalase™ (CwCA and CaCA) and Pronase-E (CwCP and CaCP) each for 3 and 6 h, and investigated for their potential to inhibit key lipid digesting enzymes i.e., pancreatic lipase (PL) and cholesteryl esterase (CE). Results revealed stronger PL and CE inhibition by CaC hydrolysates compared to CwC. Potent hydrolysates (CwCP-3 h and CaCA-6 h) upon simulated gastrointestinal digestion (SGID) showed significant improvement in inhibition of both PL and CE. However, both the SGID hydrolysates showed similar extent of PL and CE inhibition and were further sequenced for peptide identification. Peptides MMML, FDML, HLPGRG from CwC and AAGF, MSNYF, FLWPEYGAL from CaC hydrolysates were predicted to be most active PL inhibitory peptides. Peptide LP found in both CwC and CaC hydrolysates was predicted as active CE inhibitor. Thus, CwC and CaC could be potential source of peptides with promising CE and PL inhibitory properties.
    Matched MeSH terms: Protein Hydrolysates
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links