Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Monajemi H, M Zain S, Wan Abdullah WAT
    PMID: 34047250 DOI: 10.1080/15257770.2021.1923742
    The translational accuracy in protein synthesis is contributed to by several mechanisms in the ribosome, generally called kinetic proofreading. This process in the ribosome inhibits the non-cognate codon-anticodon interaction. However, it is not sufficient for fidelity of protein synthesis since a wrong amino acid can easily be added to the growing polypeptide chain if a tRNA while cognate to the mRNA, carries a non-cognate amino acid. Therefore, additional to the kinetic proofreading, there must be some hitherto unknown characteristic in misacylated-tRNAs to stop the process of protein synthesis if such misacylated-tRNA is accommodated in the ribosomal A-site. In order to understand this characteristic, we have performed computational quantum chemistry analysis on five different tRNA molecules, each one attached to five different amino acids with one being cognate to the tRNA and the other four non-cognate. This study shows the importance of aminoacyl-tRNA binding energy in ensuring fidelity of protein synthesis.
    Matched MeSH terms: Protein Biosynthesis*
  2. Juzaily Husain
    MyJurnal
    The development of treatment strategies for periodontitis that maximise the
    effectiveness of antibiotics is highly desirable. Azithromycin is proving to be an effective antibiotic
    for treatment of refractory periodontitis which works by binding to the outer membrane of Gramnegative bacteria and subsequently inhibits protein synthesis. Lactoferrin is a membrane-active
    host antimicrobial protein and so the objective of this study was to determine whether the effect
    of azithromycin (AZM) against example periodontopathogens (Porphyromonas gingivalis and
    Tannerella forsythia) could be potentiated by lactoferrin. (Copied from article).
    Matched MeSH terms: Protein Biosynthesis
  3. Zainal Abidin S, Abbaspourbabaei M, Ntimi CM, Siew WH, Pike-See C, Rosli R, et al.
    Malays J Med Sci, 2014 Dec;21(Spec Issue):27-33.
    PMID: 25941460 MyJurnal
    MicroRNAs (miRNAs) have a crucial role in gene expression regulation and protein synthesis, especially in the central nervous system. In developing mouse embryos a novel miRNA, miR-3099, is highly expressed, particularly in the central nervous system. This study aims to determine the expression of miR-3099 during cellular differentiation of 46C mouse embryonic stem cells after neural induction with N2/B27 medium.
    Matched MeSH terms: Protein Biosynthesis
  4. Wong RR, Kong C, Lee SH, Nathan S
    Sci Rep, 2016 06 07;6:27475.
    PMID: 27273550 DOI: 10.1038/srep27475
    Toxins are believed to play a crucial role in Burkholderia pseudomallei pathogenicity, however to date, only a few have been identified. The discovery of additional toxic molecules is limited by the lack of a sensitive indicator of B. pseudomallei toxicity. Previously, from a whole genome transcriptome analysis of B. pseudomallei-infected Caenorhabditis elegans, we noted significant overexpression of a number of worm genes encoding detoxification enzymes, indicating the host's attempt to clear bacterial toxic molecules. One of these genes, ugt-29, a family member of UDP-glucuronosyltransferases, was the most robustly induced phase II detoxification gene. In this study, we show that strong induction of ugt-29 is restricted to infections by the most virulent species among the pathogens tested. We also noted that ugt-29 is activated upon disruption of host protein synthesis. Hence, we propose that UGT-29 could be a promising biosensor to detect B. pseudomallei toxins that compromise host protein synthesis. The identification of bactobolin, a polyketide-peptide hybrid molecule, as a toxic molecule of B. pseudomallei further verifies the utilization of this surveillance system to search for bacterial toxins. Hence, a ugt-29 based reporter should be useful in screening for other molecules that inhibit host protein synthesis.
    Matched MeSH terms: Protein Biosynthesis/drug effects*
  5. Chong UR, Abdul-Rahman PS, Abdul-Aziz A, Hashim OH, Mat-Junit S
    Biomed Res Int, 2013;2013:459017.
    PMID: 24455694 DOI: 10.1155/2013/459017
    The fruit pulp extract of Tamarindus indica has been reported for its antioxidant and hypolipidemic properties. In this study, the methanol extract of T. indica fruit pulp was investigated for its effects on the abundance of HepG2 cell lysate proteins. Cell lysate was extracted from HepG2 cells grown in the absence and presence of the methanol extract of T. indica fruit pulp. Approximately 2500 spots were resolved using two-dimensional gel electrophoresis and the abundance of 20 cellular proteins was found to be significantly reduced. Among the proteins of reduced abundance, fourteen, including six proteins involved in metabolism (including ethanolamine phosphate cytidylyltransferase), four mitochondrial proteins (including prohibitin and respiratory chain proteins), and four proteins involved in translation and splicing, were positively identified by mass spectrometry and database search. The identified HepG2 altered abundance proteins, when taken together and analyzed by Ingenuity Pathways Analysis (IPA) software, are suggestive of the effects of T. indica fruit pulp extract on metabolism and inflammation, which are modulated by LXR/RXR. In conclusion, the methanol fruit pulp extract of T. indica was shown to cause reduced abundance of HepG2 mitochondrial, metabolic, and regulatory proteins involved in oxidative phosphorylation, protein synthesis, and cellular metabolism.
    Matched MeSH terms: Protein Biosynthesis/drug effects
  6. Ang KC, Ibrahim P, Gam LH
    Biotechnol Appl Biochem, 2014 Mar-Apr;61(2):153-64.
    PMID: 23826872 DOI: 10.1002/bab.1137
    Mycobacterium tuberculosis is a causative agent of tuberculosis (TB). The ability of M. tuberculosis to be quiescent in the cell has caused the emergence of latent infection. A comprehensive proteomic analysis of M. tuberculosis H37Rv over three growth phases, namely mid-log (14-day culture), early stationary (28-day culture), and late stationary (50-day culture), was performed in order to study the change in proteome from the mid-log phase to late-stationary phase. Combination methods of two-dimensional electrophoresis (2-DE) and tandem mass spectrometry were used to generate proteome maps of M. tuberculosis at different growth phases. Ten proteins were detected differentially expressed in the late-stationary phase compared with the other two phases. These proteins were SucD, TrpD, and Rv2161c, which belong to metabolic pathway proteins; FadE5, AccD5, DesA1, and Rv1139c are proteins involved in cell wall or lipid biosynthesis, whereas TB21.7 and Rv3224 are conserved hypothetical proteins with unknown function. A surface antigen protein, DesA1, was not detectable in the late-stationary phase, although present in both log and early-stationary phases. The changes in the expression levels of these proteins were in line with the growth environment changes of the bacteria from mid-log phase to late-stationary phase. The information gathered may be valuable in the intervention against latent TB infection.
    Matched MeSH terms: Protein Biosynthesis*
  7. Chan SY, Sam IC, Lai JK, Chan YF
    J Proteomics, 2015 Jul 1;125:121-30.
    PMID: 26003530 DOI: 10.1016/j.jprot.2015.05.016
    Hand, foot and mouth disease is mainly caused by enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16), but EV-A71 is also associated with severe neurological complications. Host factors may contribute to the different clinical outcomes of EV-A71 and CV-A16 infections. A neurovirulent EV-A71 strain (EV-A71/UH1) from a fatal case, a non-neurovirulent EV-A71 strain (EV-A71/Sha66) and a CV-A16 strain (CV-A16/22159) from cases of uncomplicated HFMD were used. Replication of the viruses in SK-N-MC (neuronal) and HT-29 (intestinal) cell lines correlated with the severity of clinical disease associated with each virus. EV-A71/UH1 showed the greatest replication in neuronal cells. In HT-29 cells, both EV-A71 strains replicated well, but CV-A16/22159 showed no effective replication. The proteomes of mock and infected SK-N-MC and HT-29 cell lines were compared by 2D-SDS-PAGE. The differentially expressed proteins were identified by MALDI-TOF/TOF analysis. There were 46 and 44 differentially expressed proteins identified from SK-N-MC and HT-29 cells, respectively, categorized under apoptosis, stress, cytoskeletal, energy metabolism proteins and others. Western blot validation showed that EV-A71/UH1 and CV-A16 also differentially induced proteins involved in viral RNA translation and host cell stress responses in neuronal and intestinal cell lines.
    Matched MeSH terms: Protein Biosynthesis*
  8. Le CF, Fang CM, Sekaran SD
    PMID: 28167546 DOI: 10.1128/AAC.02340-16
    Antimicrobial peptides (AMPs) are expressed in various living organisms as first-line host defenses against potential harmful encounters in their surroundings. AMPs are short polycationic peptides exhibiting various antimicrobial activities. The principal antibacterial activity is attributed to the membrane-lytic mechanism which directly interferes with the integrity of the bacterial cell membrane and cell wall. In addition, a number of AMPs form a transmembrane channel in the membrane by self-aggregation or polymerization, leading to cytoplasm leakage and cell death. However, an increasing body of evidence has demonstrated that AMPs are able to exert intracellular inhibitory activities as the primary or supportive mechanisms to achieve efficient killing. In this review, we focus on the major intracellular targeting activities reported in AMPs, which include nucleic acids and protein biosynthesis and protein-folding, protease, cell division, cell wall biosynthesis, and lipopolysaccharide inhibition. These multifunctional AMPs could serve as the potential lead peptides for the future development of novel antibacterial agents with improved therapeutic profiles.
    Matched MeSH terms: Protein Biosynthesis/drug effects*
  9. Batool T, Makky EA, Jalal M, Yusoff MM
    Appl Biochem Biotechnol, 2016 Mar;178(5):900-23.
    PMID: 26547852 DOI: 10.1007/s12010-015-1917-3
    L-asparaginase (LA) catalyzes the degradation of asparagine, an essential amino acid for leukemic cells, into ammonia and aspartate. Owing to its ability to inhibit protein biosynthesis in lymphoblasts, LA is used to treat acute lymphoblastic leukemia (ALL). Different isozymes of this enzyme have been isolated from a wide range of organisms, including plants and terrestrial and marine microorganisms. Pieces of information about the three-dimensional structure of L-asparaginase from Escherichia coli and Erwinia sp. have identified residues that are essential for catalytic activity. This review catalogues the major sources of L-asparaginase, the methods of its production through the solid state (SSF) and submerged (SmF) fermentation, purification, and characterization as well as its biological roles. In the same breath, this article explores both the past and present applications of this important enzyme and discusses its future prospects.
    Matched MeSH terms: Protein Biosynthesis
  10. Adnan SN, Ibrahim N, Yaacob WA
    Germs, 2017 Dec;7(4):186-192.
    PMID: 29264356 DOI: 10.18683/germs.2017.1125
    Introduction: Methicillin-resistant Staphylococcus aureus (MRSA) is a worldwide public health threat, displaying multiple antibiotic resistance that causes morbidity and mortality. Management of multidrug-resistant (MDR) MRSA infections is extremely difficult due to their inherent resistance to currently used antibiotics. New antibiotics are needed to combat the emergence of antimicrobial resistance.

    Methods: The in vitro effect of tannins was studied against MRSA reference strain (ATCC 43300) and MRSA clinical strains utilizing antimicrobial assays in conjunction with both scanning and transmission electron microscopy. To reveal the influence of tannins in MRSA protein synthesis disruption, we utilized next-generation sequencing (NGS) to provide further insight into the novel protein synthesis transcriptional response of MRSA exposed to these compounds.

    Results: Tannins possessed both bacteriostatic and bactericidal activity with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 0.78 and 1.56 mg/mL, respectively, against all tested MRSA. Scanning and transmission electron microscopy of MRSA treated with tannins showed decrease in cellular volume, indicating disruption of protein synthesis.

    Conclusion: Analysis of a genome-wide transcriptional profile of the reference strain ATCC 43300 MRSA in response to tannins has led to the finding that tannins induced significant modulation in essential ribosome pathways, which caused a reduction in the translation processes that lead to inhibition of protein synthesis and obviation of bacterial growth. These findings highlight the potential of tannins as new promising anti-MRSA agents in clinical application such as body wash and topical cream or ointments.

    Matched MeSH terms: Protein Biosynthesis
  11. Looi LM, Azura WW, Cheah PL, Ng MH
    Pathology, 2001 Aug;33(3):283-6.
    PMID: 11523925
    This investigation was carried out to gain insight into the prevalence of pS2 expression in invasive ductal breast carcinoma in the Malaysian population and its correlation with oestrogen receptor (ER) protein expression and tumour aggressiveness. Seventy consecutive infiltrating ductal breast carcinomas treated with mastectomy and axillary lymph node clearance were investigated, using the standard avidin-biotin complex immunoperoxidase method with microwave antigen retrieval and commercial monoclonal antibodies (Dako), for expression of pS2 and human ER. This was correlated against histological grade (modified Bloom and Richardson) and the presence of axillary lymph node metastasis of these carcinomas. Four (5.7%) were grade 1, 40 (57.1%) grade 2 and 26 (37.1%) grade 3 tumours. A total of 45 (64%) showed histological evidence of axillary lymph node metastasis. Forty (57%) were ER-positive, while 31 (44%) were pS2-positive. There was a statistically significant correlation between pS2 and ER expressions (chi2-test with Yates correction: P<0.005). There was no correlation between pS2 expression and histological grade (P>0.1) and the presence of lymph node metastasis (P>0.1). Our findings support the views that pS2 may be a co-marker of endocrine responsiveness in invasive breast cancer and that it does not influence breast cancer biology in terms of potential for metastatic spread.
    Matched MeSH terms: Protein Biosynthesis*
  12. Monajemi H, Omar NY, Daud MN, Zain SM, Abdullah WA
    PMID: 21902474 DOI: 10.1080/15257770.2011.605780
    The proper arrangement of amino acids in a protein determines its proper function, which is vital for the cellular metabolism. This indicates that the process of peptide bond formation requires high fidelity. One of the most important processes for this fidelity is kinetic proofreading. As biochemical experiments suggest that kinetic proofreading plays a major role in ensuring the fidelity of protein synthesis, it is not certain whether or not a misacylated tRNA would be corrected by kinetic proofreading during the peptide bond formation. Using 2-layered ONIOM (QM/MM) computational calculations, we studied the behavior of misacylated tRNAs and compared the results with these for cognate aminoacyl-tRNAs during the process of peptide bond formation to investigate the effect of nonnative amino acids on tRNAs. The difference between the behavior of initiator tRNA(i) (met) compared to the one for the elongator tRNAs indicates that only the initiator tRNA(i) (met) specifies the amino acid side chain.
    Matched MeSH terms: Protein Biosynthesis
  13. Liang S, Singh M, Dharmaraj S, Gam LH
    Dis Markers, 2010;29(5):231-42.
    PMID: 21206008 DOI: 10.3233/DMA-2010-0753
    Breast cancer is a leading cause of mortality in women. In Malaysia, it is the most common cancer to affect women. The most common form of breast cancer is infiltrating ductal carcinoma (IDC). A proteomic approach was undertaken to identify protein profile changes between cancerous and normal breast tissues from 18 patients. Two protein extracts; aqueous soluble and membrane associated protein extracts were studied. Thirty four differentially expressed proteins were identified. The intensities of the proteins were used as variables in PCA and reduced data of six principal components (PC) were subjected to LDA in order to evaluate the potential of these proteins as collective biomarkers for breast cancer. The protein intensities of SEC13-like 1 (isoform b) and calreticulin contributed the most to the first PC while the protein intensities of fibrinogen beta chain precursor and ATP synthase D chain contributed the most to the second PC. Transthyretin precursor and apolipoprotein A-1 precursor contributed the most to the third PC. The results of LDA indicated good classification of samples into normal and cancerous types when the first 6 PCs were used as the variables. The percentage of correct classification was 91.7% for the originally grouped tissue samples and 88.9% for cross-validated samples.
    Matched MeSH terms: Protein Biosynthesis
  14. Akbar MA, Mohd Yusof NY, Tahir NI, Ahmad A, Usup G, Sahrani FK, et al.
    Mar Drugs, 2020 Feb 05;18(2).
    PMID: 32033403 DOI: 10.3390/md18020103
    Saxitoxin is an alkaloid neurotoxin originally isolated from the clam Saxidomus giganteus in 1957. This group of neurotoxins is produced by several species of freshwater cyanobacteria and marine dinoflagellates. The saxitoxin biosynthesis pathway was described for the first time in the 1980s and, since then, it was studied in more than seven cyanobacterial genera, comprising 26 genes that form a cluster ranging from 25.7 kb to 35 kb in sequence length. Due to the complexity of the genomic landscape, saxitoxin biosynthesis in dinoflagellates remains unknown. In order to reveal and understand the dynamics of the activity in such impressive unicellular organisms with a complex genome, a strategy that can carefully engage them in a systems view is necessary. Advances in omics technology (the collective tools of biological sciences) facilitated high-throughput studies of the genome, transcriptome, proteome, and metabolome of dinoflagellates. The omics approach was utilized to address saxitoxin-producing dinoflagellates in response to environmental stresses to improve understanding of dinoflagellates gene-environment interactions. Therefore, in this review, the progress in understanding dinoflagellate saxitoxin biosynthesis using an omics approach is emphasized. Further potential applications of metabolomics and genomics to unravel novel insights into saxitoxin biosynthesis in dinoflagellates are also reviewed.
    Matched MeSH terms: Protein Biosynthesis
  15. Harun MSR, Taylor M, Zhu XQ, Elsheikha HM
    Microorganisms, 2020 Jun 04;8(6).
    PMID: 32512820 DOI: 10.3390/microorganisms8060842
    Central to the progression of cerebral toxoplasmosis is the interaction of Toxoplasma gondii with the blood-brain barrier (BBB) endothelial cells. In the present work, we tested the hypothesis that inhibition of Wnt pathway signalling by the monovalent ionophore monensin reduces the growth of T. gondii infecting human brain microvascular endothelial cells (hBMECs) or microglial cells. The anti-parasitic effect of monensin (a Wnt signalling inhibitor) on the in vitro growth of T. gondii tachyzoites was investigated using two methods (Sulforhodamine B staining and microscopic parasite counting). The monensin inhibited T. gondii growth (50% inhibitory concentration [IC50] = 0.61 μM) with a selective index = 8.48 when tested against hBMECs (50% cytotoxic concentration [CC50] = 5.17 μM). However, IC50 of monensin was 4.13 μM with a SI = 13.82 when tested against microglia cells (CC50 = 57.08 μM), suggesting less sensitivity of microglia cells to monensin treatment. The effect of T. gondii on the integrity of the BBB was assessed by the transendothelial electrical resistance (TEER) assay using an in vitro human BBB model. The results showed that T. gondii infection significantly decreased hBMECs' TEER resistance, which was rescued when cells were treated with 0.1 µM monensin, probably due to the anti-parasitic activity of monensin. We also investigated the host-targeted effects of 0.1 µM monensin on global gene expression in hBMECs with or without T. gondii infection. Treatment of hBMECs with monensin did not significantly influence the expression of genes involved in the Wnt signalling pathway, suggesting that although inhibition of the Wnt signalling pathway did not play a significant role in T. gondii infection of hBMECs, monensin was still effective in limiting the growth of T. gondii. On the contrary, monensin treatment downregulated pathways related to steroids, cholesterol and protein biosynthesis and their transport between endoplasmic reticulum and Golgi apparatus, and deregulated pathways related to cell cycle and DNA synthesis and repair mechanisms. These results provide new insight into the host-modulatory effect of monensin during T. gondii infection, which merits further investigation.
    Matched MeSH terms: Protein Biosynthesis
  16. Liang S, Singh M, Gam LH
    J Biomed Biotechnol, 2010;2010:516469.
    PMID: 21197096 DOI: 10.1155/2010/516469
    Breast cancer is a leading cause of female deaths worldwide. In Malaysia, it is the most common form of female cancer while Infiltrating ductal carcinoma (IDC) is the most common form of breast cancer. A proteomic approach was used to identify changes in the protein profile of breast cancerous and normal tissues. The patients were divided into different cohorts according to tumour stage and grade. We identified twenty-four differentially expressed hydrophilic proteins. A few proteins were found significantly related to various stages and grades of IDC, amongst which were SEC13-like 1 (isoform b), calreticulin, 14-3-3 protein zeta, and 14-3-3 protein eta. In this study, we found that by defining the expression of the proteins according to stages and grades of IDC, a significant relationship between the expression of the proteins with the stage or grade of IDC can be established, which increases the usefulness of these proteins as biomarkers for IDC.
    Matched MeSH terms: Protein Biosynthesis
  17. Hashim NAA, Ab-Rahim S, Suddin LS, Saman MSA, Mazlan M
    Mol Clin Oncol, 2019 Jul;11(1):3-14.
    PMID: 31289671 DOI: 10.3892/mco.2019.1853
    Accurate diagnosis of colorectal cancer (CRC) relies on the use of invasive tools such as colonoscopy and sigmoidoscopy. Non-invasive tools are less sensitive in detecting the disease, particularly in the early stage. A number of researchers have used metabolomics analyses on serum/plasma samples of patients with CRC compared with normal healthy individuals in an effort to identify biomarkers for CRC. The aim of the present review is to compare reported serum metabolomics profiles of CRC and to identify common metabolites affected among these studies. A literature search was performed to include any experimental studies on global metabolomics profile of CRC using serum/plasma samples published up to March 2018. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool was used to assess the quality of the studies reviewed. In total, nine studies were included. The studies used various analytical platforms and were performed on different populations. A pathway enrichment analysis was performed using the data from all the studies under review. The most affected pathways identified were protein biosynthesis, urea cycle, ammonia recycling, alanine metabolism, glutathione metabolism and citric acid cycle. The metabolomics analysis revealed levels of metabolites of glycolysis, tricarboxylic acid cycle, anaerobic respiration, protein, lipid and glutathione metabolism were significantly different between cancer and control samples. Although the majority of differentiating metabolites identified were different in the different studies, there were several metabolites that were common. These metabolites include pyruvic acid, glucose, lactic acid, malic acid, fumaric acid, 3-hydroxybutyric acid, tryptophan, phenylalanine, tyrosine, creatinine and ornithine. The consistent dysregulation of these metabolites among the different studies suggest the possibility of common diagnostic biomarkers for CRC.
    Matched MeSH terms: Protein Biosynthesis
  18. Hooshmand S, Ghaderi A, Yusoff K, Thilakavathy K, Rosli R, Mojtahedi Z
    Asian Pac J Cancer Prev, 2014;15(7):3311-7.
    PMID: 24815488
    BACKGROUND: The consequence of Rho GDP dissociation inhibitor alpha (RhoGDIα) activity on migration and invasion of estrogen receptor positive (ER+) and negative (ER-) breast cancer cells has not been studied using the proteomic approach. Changes in expression of RhoGDIα and other proteins interacting directly or indirectly with RhoGDIα in MCF7 and MDA-MB-231, with different metastatic potentials is of particular interest.

    MATERIALS AND METHODS: ER+ MCF7 and ER- MDA-MB-231 cell lines were subjected to two-dimensional electrophoresis (2-DE) and spots of interest were identified by matrix-assisted laser desorption/ionization time of- flight/time- of-flight (MALDI-TOF/TOF) mass spectrometry (MS) analysis after downregulation of RhoGDIα using short interfering RNA (siRNA) and upregulated using GFP-tagged ORF clone of RhoGDIα.

    RESULTS: The results showed a total of 35 proteins that were either up- or down-regulated in these cells. Here we identifed 9 and 15 proteins differentially expressed with silencing of RhoGDIα in MCF-7 and the MDA-MB-231 cells, respectively. In addition, 10 proteins were differentially expressed in the upregulation of RhoGDIα in MCF7, while only one protein was identified in the upregulation of RhoGDIα in MDA-MB-231. Based on the biological functions of these proteins, the results revealed that proteins involved in cell migration are more strongly altered with RhoGDI-α activity. Although several of these proteins have been previously indicated in tumorigenesis and invasiveness of breast cancer cells, some ohave not been previously reported to be involved in breast cancer migration. Hence, these proteins may serve as useful candidate biomarkers for tumorigenesis and invasiveness of breast cancer cells.

    CONCLUSIONS: Future studies are needed to determine the mechanisms by which these proteins regulate cell migration. The combination of RhoGDIα with other potential biomarkers may be a more promising approach in the inhibition of breast cancer cell migration.

    Matched MeSH terms: Protein Biosynthesis/genetics
  19. Perez-Fernandez D, Shcherbakov D, Matt T, Leong NC, Kudyba I, Duscha S, et al.
    Nat Commun, 2014;5:3112.
    PMID: 24473108 DOI: 10.1038/ncomms4112
    Clinical use of 2-deoxystreptamine aminoglycoside antibiotics, which target the bacterial ribosome, is compromised by adverse effects related to limited drug selectivity. Here we present a series of 4',6'-O-acetal and 4'-O-ether modifications on glucopyranosyl ring I of aminoglycosides. Chemical modifications were guided by measuring interactions between the compounds synthesized and ribosomes harbouring single point mutations in the drug-binding site, resulting in aminoglycosides that interact poorly with the drug-binding pocket of eukaryotic mitochondrial or cytosolic ribosomes. Yet, these compounds largely retain their inhibitory activity for bacterial ribosomes and show antibacterial activity. Our data indicate that 4'-O-substituted aminoglycosides possess increased selectivity towards bacterial ribosomes and little activity for any of the human drug-binding pockets.
    Matched MeSH terms: Protein Biosynthesis/drug effects
  20. Golbabapour S, Gwaram NS, Al-Obaidi MM, Soleimani AF, Ali HM, Abdul Majid N
    Biomed Res Int, 2013;2013:703626.
    PMID: 24298554 DOI: 10.1155/2013/703626
    Schiff base complexes have appeared to be promising in the treatment of different diseases and disorders and have drawn a lot of attention to their biological activities. This study was conducted to evaluate the regulatory effect of Schiff base metal derivatives on the expression of heat shock proteins (HSP) 70 and BAX in protection against acute haemorrhagic gastric ulcer in rats. Rats were assigned to 6 groups of 6 rats: the normal control (Tween 20 5% v/v, 5 mL/kg), the positive control (Tween 20 5% v/v, 5 mL/kg), and four Schiff base derivative groups named Schiff_1, Schiff_2, Schiff_3, and Schiff_4 (25 mg/kg). After 1 h, all of the groups received ethanol 95% (5 mL/kg) but the normal control received Tween 20 (Tween 20 5% v/v, 5 mL/kg). The animals were euthanized after 60 min and the stomachs were dissected for histology (H&E), immunohistochemistry, and western blot analysis against HSP70 and BAX proteins. The results showed that the Schiff base metal derivatives enhanced the expression of HSP70 and suppressed the expression of BAX proteins during their gastroprotection against ethanol-induced gastric lesion in rats.
    Matched MeSH terms: bcl-2-Associated X Protein/biosynthesis*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links