METHODS: Here, we show a robust episomal and xeno-free reprogramming strategy for human iPS generation from dental pulp stem cells (DPSCs) which renders good efficiency (0.19%) over a short time frame (13-18 days).
RESULTS: The robustness of DPSCs as starting cells for iPS induction is found due to their exceptional inherent stemness properties, developmental origin from neural crest cells, specification for tissue commitment, and differentiation capability. To investigate the epigenetic basis for the high reprogramming efficiency of DPSCs, we performed genome-wide DNA methylation analysis and found that the epigenetic signature of DPSCs associated with pluripotent, developmental, and ecto-mesenchymal genes is relatively close to that of iPS and embryonic stem (ES) cells. Among these genes, it is found that overexpression of PAX9 and knockdown of HERV-FRD improved the efficiencies of iPS generation.
CONCLUSION: In conclusion, our study provides underlying epigenetic mechanisms that establish a robust platform for efficient generation of iPS cells from DPSCs, facilitating industrial and clinical use of iPS technology for therapeutic needs.
OBJECTIVE: Reconstructive surgery for the repair of microtia still remains the greatest challenge among the surgeons. Its repair is associated with donor-site morbidity and the degree of infection is inevitable when using alloplastic prosthesis with uncertain long-term durability. Thus, human adipose derived stem cells (HADSCs) can be an alternative cell source for cartilage regeneration. This study aims to evaluate the chondrogenic potential of HADSCs cultured with transforming growth factor-beta (TGF-β) and interaction of auricular chondrocytes with HADSCs for new cartilage generation.
METHODS: Multi-lineages differentiation features of HADSCs were monitored by Alcian Blue, Alizarin Red, and Oil Red O staining for chondrogenic, adipogenic, and osteogenic differentiation capacity, respectively. Further, HADSCs alone were culture in medium added with TGF-β3; and human auricular chondrocytes were interacted indirectly in the culture with and without TGF-βs for up to 21 days, respectively. Cell morphology and chondrogenesis were monitored by inverted microscope. For cell viability, Alamar Blue assay was used to measure the cell viability and the changes in gene expression of auricular chondrocyte markers were determined by real-time polymerase chain reaction analysis. For the induction of chondrogenic differentiation, HADSCs showed a feature of aggregation and formed a dense matrix of proteoglycans. Staining results from Alizirin Red and Oil Red O indicated the HADSCs also successfully differentiated into adipogenic and osteogenic lineages after 21 days.
RESULTS: According to a previous study, HADSCs were strongly positive for the mesenchymal markers CD90, CD73, CD44, CD9, and histocompatibility antigen. The results showed HADSCs test groups (cultured with TGF-β3) displayed chondrocytes-like cells morphology with typical lacunae structure compared to the control group without TGF-β3 after 2 weeks. Additionally, the HADSCs test groups increased in cell viability; an increase in expression of chondrocytes-specific genes (collagen type II, aggrecan core protein, SOX 9 and elastin) compared to the control. This study found that human auricular chondrocytes cells and growth factor had a positive influence in inducing HADSCs chondrogenic effects, in terms of chondrogenic differentiate of feature, increase of cell viability, and up-regulated expression of chondrogenic genes.
METHODS: We established an in vitro OA culture model by exposing human chondrocytes to proinflammatory cytokine and interleukin (IL)-1β for 36 hours prior to treatment with the herbals: C. quadrangularis, W. somnifera, and the combination of the two herbals. Cell viability, toxicity, and gene expression of OA modifying agents were examined. In addition, expression of survivin, which is crucial for cell growth, was analyzed. In vivo work on osteotomized rats studied the bone and cartilage regenerative effects of C. quadrangularis, W. somnifera, and the combination therapy.
RESULTS: Exposure of chondrocytes to IL-1β induced significant toxicity and cell death. However, herbal treatment alleviated IL-1β induced cell toxicity and upregulated cell growth and proliferation. C. quadrangularis inhibited gene expression of cytokines and matrix metalloproteinases, known to aggravate cartilage and bone destruction, and augmented expression of survivin by inhibiting p38 MAPK. Interestingly, osteotomized rats treated with C. quadrangularis drastically enhanced alkaline phosphatase and cartilage tissue formation as compared to untreated, W. somnifera only, or the combination of both herbals.
CONCLUSION: Our findings demonstrate for the first time the signaling mechanisms regulated by C. quadrangularis and W. somnifera in OA and osteogenesis. We suggest that the chondroprotective effects and regenerative ability of these herbals are via the upregulation of survivin that exerts inhibitory effects on the p38 MAPK signaling pathway. These findings thus validate C. quadrangularis as a potential therapeutic for rheumatic disorders.