Protein kinase C (PKC) has been implicated in carcinogenesis and displays variable expression profiles during cancer progression. Studies of dietary phytochemicals on cancer signalling pathway regulation have been conducted to search for potent signalling regulatory agents. The present study was designed to evaluate any suppressive effect of maslinic acid on PKC expression in human B-lymphoblastoid cells (Raji cells), and to identify the PKC isoforms expressed. Effects of maslinic acid on PKC activity were determined using a PepTag assay for non-radioactive detection of PKC. The highest expression in Raji cells was obtained at 20 nM PMA induced for 6 hours. Suppressive effects of maslinic acid were compared with those of four PKC inhibitors (H- 7, rottlerin, sphingosine, staurosporine) and two triterpenes (oleanolic acid and ursolic acid). The IC₅₀ values achieved for maslinic acid, staurosporine, H-7, sphingosine, rottlerin, ursolic acid and oleanolic acid were 11.52, 0.011, 0.767, 2.45, 5.46, 27.93 and 39.29 μM, respectively. Four PKC isoforms, PKC βI, βII, δ, and ζ, were identified in Raji cells via western blotting. Maslinic acid suppressed the expression of PKC βI, δ, and ζ in a concentration-dependent manner. These preliminary results suggest promising suppressive effects of maslinic acid on PKC activity in Raji cells. Maslinic acid could be a potent cancer chemopreventive agent that may be involved in regulating many downstream signalling pathways that are activated through PKC receptors.
Leukaemic stem cells have heterogenous differentiation potential. The immunophenotypes of blast cells are usually consistent throughout the disease course even at relapse. Rarely, blast cells may undergo a ‘lineage switch’ during the course of disease especially during relapse. We would like to highlight such a case in a 10- year old boy who presented with a two weeks history of lethargy, poor appetite, low grade fever, respiratory distress, cardiac failure, generalized oedema and hepatosplenomegaly. Full blood count showed a leucocyte count of 41.5x10 9 /L and platelet count of 37x10 9 /L. The peripheral blood film showed presence of numerous blast cells. Bone marrow aspiration revealed a hypercellular marrow, which consisted of mainly blast cells with high nuclear to cytoplasmic ratio and inconspicuous nucleoli. Immunophenotyping and cytochemistry results were consistent with the diagnosis of Tcell acute lymphoblastic leukaemia. The patient achieved remission after treatment with UK ALL 97 protocol, regime B chemotherapy. However, he relapsed seven months after the initial diagnosis with 26% blast cells in the bone marrow aspirate. The majority was L1 blast cells admixed with some L2 blast cells. Immunophenotyping was consistent with common precursor B acute lymphoblastic leukaemia. The treatment was changed to a more lineage specific chemotherapy. Nonetheless, the patient never achieved remission and was planned for palliative management. This case illustrated a unique and rare case of rapid lineage switch from T-cell acute lymphoblastic leukaemia to common precursor B-cell acute lymphoblastic leukaemia.