OBJECTIVES: The aim of the study was to evaluate the effect of fiber post location on fracture resistance and failure mode of endodontically treated premolars with 2 roots.
MATERIAL AND METHODS: Fifty extracted maxillary first premolars with 2 roots were divided randomly into 5 groups. Group 1 was comprised of sound teeth, which received only metal crowns (control). Teeth from groups 2, 3, 4, and 5 were decoronated 2 mm above the cementoenamel junction (CEJ) and were endodontically treated. No post was placed in group 2 teeth. Teeth from groups 3, 4 and 5 were given a fiber post placed in the buccal canal, palatal canal, and both buccal and palatal canals, respectively. All teeth in groups 2, 3, 4, and 5 were built up with composite and full coverage metal crowns. A compressive static load was applied at an angle of 25° to the crowns with a crosshead speed of 0.5 mm/min, until fracture.
RESULTS: One-way analysis of variance (ANOVA) showed significant differences among the groups (p = 0.002). A post hoc test showed significantly lower fracture resistance of group 4 compared to group 5 (p = 0.011). Furthermore, group 2 had significantly less fracture resistance compared to group 1 (p = 0.021) and group 5 (p = 0.002). According to Fisher's exact test, different post locations are non-significantly associated with fracture mode (p = 0.256).
CONCLUSIONS: Fiber post location has a significant effect on fracture resistance of severely damaged, endodontically treated maxillary premolars with 2 roots. However, post placement in the palatal root is preferred, as it maintains the restorability of the tooth.
METHOD: A questionnaire containing 19 single-answer, multiple-choice type questions was mailed to 503 GDPs practising in the Greater Manchester area in January 2002. An explanatory covering letter and a stamped addressed return envelope were enclosed. The data obtained were processed using SPSS statistical software.
RESULTS: Three hundred and fifty-one (70%) of the practitioners responded to the questionnaire. The restoration of root-filled teeth was normally undertaken within 1-2 weeks of completing root canal therapy by 63% of the practitioners. Only 35% of the GDPs used posts routinely in the restoration of root-filled anterior teeth; the corresponding figure for posterior teeth was 15%. While a cast, precious metal post was the preferred choice in the restoration of anterior teeth, the use of prefabricated posts and related techniques predominated in the restoration of posterior teeth. Composite resin was the most popular choice of material for core build-up procedures in anterior teeth. Amalgam tended to be favoured for core build-ups in posterior teeth. The majority of the practitioners (56%) routinely restored root-filled anterior teeth by means of porcelain-fused-to-metal crowns. Seventy-three per cent of the GDPs preferred to restore root-filled posterior teeth by means of a full veneer crown.
CONCLUSIONS: The results of this study suggest that the practitioners surveyed had a sound understanding of the principles involved in the restoration of endodontically treated teeth, with the possible exception of the need to establish a durable coronal seal as soon as possible after the placement of a root filling.
METHODS: 75 human mandibular molars were randomly divided into five equal groups. Teeth were standardized, endodontically-treated and restored according the assigned group as follows: amalgam core only, prefabricated titanium post in the distal canal and amalgam core, composite core only; fiber post in the distal canal and composite core. One group of untreated sound teeth was used as a control. Non-precious metal crowns were fabricated and cemented on the prepared specimens with Rely X U200 resin cement. All specimens were subjected to a compressive load at crosshead speed 0.5 mm/minute, 25° to the long axis of the tooth. Failure loads and modes were recorded.
RESULTS: Mean failure loads among the groups were significantly different (P= 0.035). Post-hoc multiple pair-wise comparisons revealed the amalgam core and composite core groups produced significantly lower fracture resistance than the control group (P= 0.041 and P= 0.025, respectively) and no significant differences among the different intra-radicular techniques (P> 0.05). The composite core with fiber post and amalgam core with titanium posts showed the highest percentage of favorable failures (67%) and non-favorable failures (87%) respectively.
CLINICAL SIGNIFICANCE: The composite core with fiber post is the most appropriate intraradicular restoration in cases of severely compromised molars.
MATERIALS AND METHODS: A total of 40 of the two types of fiber posts, namely, FRC Prostec (FRC) and Fiber KOR (KOR), were used for the experiment. UV irradiation was applied on top of the fiber post surface for 0, 15, 20, and 30 min. The irradiated surface of the fiber posts (n = 5) were immediately bonded with resin cement (Rely X U200) after UV irradiation. Shear bond strength (SBS) MPa was measured, and the dislodged area of post surfaces was examined with scanning electron microscopes. Changes in surface roughness (Ra) of the FRC group after UV irradiation were observed (n = 3) using atomic force microscopy. Data of SBS were statistically analyzed using one-way analysis of variance, followed by multiple comparisons (P < 0.05).
RESULTS: SBS was significantly higher for 20 min of UV irradiation of the FRC group while significantly higher SBS was observed with 15 min of UV irradiation of the KOR group. Resin cement was more evident (cohesive failure) on the dislodged post surface of the UV treated groups compared with the control. The surface roughness of the FRC post was Ra = 175.1 nm and Ra = 929.2 nm for the control and the 20 min group, respectively.
CONCLUSIONS: Higher surface roughness of the UV irradiated group indicated formation of mechanical retention on the fiber post surface. Evidence of cohesive failure was observed which indicated higher SBS of fiber post with the UV irradiated group.
METHODS: Sixty-five extracted maxillary incisors were decoronated, its canal was artificially flared and randomly categorized into group tFRC (tapered FRC post) (n = 22), mFRC (multi-FRC post) (n = 21), and DIS-FRC (direct individually shaped-FRC (DIS-FRC) post) (n = 22), which were further subdivided based on cementation resin. The posts were cemented and a standardized resin core was constructed. After thermocycling, the samples were loaded statically and the maximum load was recorded.
RESULTS: The load capacity of the maxillary central incisor was influenced by the different FRC post system and not the resin cement (p = 0.289), and no significant interaction was found between them. Group mFRC (522.9N) yielded a significantly higher load capacity compared to DIS-FRC (421.1N). Overall, a 55% favorable fracture pattern was observed, and this was not statistically significant.
CONCLUSION: Within the limitation of the study, it can be concluded that prefabricated FRC posts outperform DIS-FRC posts in terms of the load capacity of a maxillary central incisor with a simulated flared root canal. The cementation methods whether a self-adhesive or self-etch resin cement, was not demonstrated to influence the load capacity of a maxillary central incisor with a flared root canal. There were no significant differences between the favorable and non-favorable fracture when FRC post systems were used to restored a maxillary central incisor with a flared root canal.