Displaying publications 1 - 20 of 66 in total

Abstract:
Sort:
  1. Wijekoon MMJO, Mahmood K, Ariffin F, Mohammadi Nafchi A, Zulkurnain M
    Int J Biol Macromol, 2023 Jun 30;241:124539.
    PMID: 37085081 DOI: 10.1016/j.ijbiomac.2023.124539
    Fat-soluble vitamins (FSVs) offer a range of beneficial properties as important nutrients in human nutrition. However, the high susceptibility to environmental conditions such as high temperature, light, and oxygen leads to the degradation of these compounds. This review highlights the different formulations underlying the encapsulation of FSVs in biopolymer (polysaccharide and protein) and lipid-based micro or nanocarriers for potential applications in food and pharmaceutical industries. In particular, the function of these carrier systems in terms of encapsulation efficiency, stability, bioavailability, and bio-accessibility is critically discussed. Recently, tremendous attention has been paid to encapsulating FSVs in commercial applications. According to the chemical nature of the active compound, the vigilant selection of delivery formulation, method of encapsulation, and final application (type of food) are the key important factors to be considered in the encapsulation of FSVs to ensure a high loading capacity, stability, bioavailability, and bio-accessibility. Future studies are recommended on the effect of different vitamin types and micro and nano encapsulate sizes on bioaccessibility and biocompatibility through in vitro/in vivo studies. Moreover, the toxicity and safety evaluation of encapsulated FSVs in human health should be evaluated before commercial application in food and pharmaceuticals.
    Matched MeSH terms: Polysaccharides/chemistry
  2. Lim SJ, Wan Aida WM, Schiehser S, Rosenau T, Böhmdorfer S
    Food Chem, 2019 Jan 30;272:222-226.
    PMID: 30309536 DOI: 10.1016/j.foodchem.2018.08.034
    Fucoidan is a sulphated polysaccharide, made up mainly of l-fucose, which is found in brown seaweeds. Its chemical structure is diverse and depends on maturity, species and geographical location. The objective of this study was to elucidate the chemical structure of fucoidan from Cladosiphon okamuranus harvested in Japan. The fucoidan was subject to purification prior to monosaccharide profiling, sulphate content determination, and linkage analysis. Our results showed that Japanese Cladosiphon okamuranus fucoidan contained 70.13 ± 0.22 wt% fucose and 15.16 ± 1.17 wt% sulphate. Other minor monosaccharides found were d-xylose, d-galactose, d-mannose, d-glucose, d-arabinose, d-rhamnose and d-glucuronic acid. Linkage analysis revealed that fucopyranoside units along the backbone are linked, through α-1,3-glycosidic bonds, with fucose branching at C-2, and one sulphate group at C-4 per every three fucose units, i.e. the structure of fucoidan from Japanese Cladosiphon okamuranus is [→3)-α-fuc(1→]0.52[→3)-α-fuc-4-OSO3-(1→]0.33[→2)-α-fuc]0.14.
    Matched MeSH terms: Polysaccharides/chemistry*
  3. Mukherjee S, Mukhopadhyay S, Pariatamby A, Ali Hashim M, Sahu JN, Sen Gupta B
    J Environ Sci (China), 2014 Sep 1;26(9):1851-60.
    PMID: 25193834 DOI: 10.1016/j.jes.2014.06.029
    Recovery of cellulose fibres from paper mill effluent has been studied using common polysaccharides or biopolymers such as Guar gum, Xanthan gum and Locust bean gum as flocculent. Guar gum is commonly used in sizing paper and routinely used in paper making. The results have been compared with the performance of alum, which is a common coagulant and a key ingredient of the paper industry. Guar gum recovered about 3.86mg/L of fibre and was most effective among the biopolymers. Settling velocity distribution curves demonstrated that Guar gum was able to settle the fibres faster than the other biopolymers; however, alum displayed the highest particle removal rate than all the biopolymers at any of the settling velocities. Alum, Guar gum, Xanthan gum and Locust bean gum removed 97.46%, 94.68%, 92.39% and 92.46% turbidity of raw effluent at a settling velocity of 0.5cm/min, respectively. The conditions for obtaining the lowest sludge volume index such as pH, dose and mixing speed were optimised for guar gum which was the most effective among the biopolymers. Response surface methodology was used to design all experiments, and an optimum operational setting was proposed. The test results indicate similar performance of alum and Guar gum in terms of floc settling velocities and sludge volume index. Since Guar gum is a plant derived natural substance, it is environmentally benign and offers a green treatment option to the paper mills for pulp recycling.
    Matched MeSH terms: Polysaccharides/chemistry*
  4. Nordin NI, Ariffin H, Andou Y, Hassan MA, Shirai Y, Nishida H, et al.
    Molecules, 2013 Jul 30;18(8):9132-46.
    PMID: 23903185 DOI: 10.3390/molecules18089132
    In this study, oil palm mesocarp fiber (OPMF) was treated with superheated steam (SHS) in order to modify its characteristics for biocomposite applications. Treatment was conducted at temperatures 190-230 °C for 1, 2 and 3 h. SHS-treated OPMF was evaluated for its chemical composition, thermal stability, morphology and crystallinity. OPMF treated at 230 °C exhibited lower hemicellulose content (9%) compared to the untreated OPMF (33%). Improved thermal stability of OPMF was found after the SHS treatment. Moreover, SEM and ICP analyses of SHS-treated OPMF showed that silica bodies were removed from OPMF after the SHS treatment. XRD results exhibited that OPMF crystallinity increased after SHS treatment, indicating tougher fiber properties. Hemicellulose removal makes the fiber surface more hydrophobic, whereby silica removal increases the surface roughness of the fiber. Overall, the results obtained herewith suggested that SHS is an effective treatment method for surface modification and subsequently improving the characteristics of the natural fiber. Most importantly, the use of novel, eco-friendly SHS may contribute to the green and sustainable treatment for surface modification of natural fiber.
    Matched MeSH terms: Polysaccharides/chemistry*
  5. Chatterjee S, Mahmood S, Hilles AR, Thomas S, Roy S, Provaznik V, et al.
    Int J Biol Macromol, 2023 Sep 01;248:125757.
    PMID: 37429342 DOI: 10.1016/j.ijbiomac.2023.125757
    Research and development in health care industry is in persistence progression. To make it more patient-friendly or to get maximum benefits from it, special attention to different advanced drug delivery system (ADDS) is employed that delivers the drug at the target site and will be able to sustain/control release of drugs. ADDS should be non-toxic, biodegradable, biocompatible along with desirable showing physicochemical and functional properties. These drug delivery systems can be totally based on polymers, either with natural or synthetic polymers. The molecular weight of polymer can be tuned and different groups of polymers can be modified or substituted with other functional groups. Degree of substitution is also tailored. Cationic starch in recent years is exploited in drug delivery, tissue engineering and biomedicine. Due to their abundant availability, low cost, easy chemical modification, low toxicity, biodegradability and biocompatibility, extensive research is now being carried out. Our present discussion will shed light on the usage of cationic starch in health care system.
    Matched MeSH terms: Polysaccharides/chemistry
  6. Yang B, Prasad KN, Jiang Y
    Carbohydr Polym, 2016 Feb 10;137:570-575.
    PMID: 26686165 DOI: 10.1016/j.carbpol.2015.10.088
    As a health-beneficial fruit, litchi is widely accepted by people in subtropical and tropical regions. However, the critical chemicals responsible for the health benefits are not clear yet. As a large amount of polysaccharides are present in litchi, they might play an important role in the health benefits. In this work, the main water-soluble polysaccharide (LPPBa) was purified from litchi pulp. The chemical structure was characterized as arabinogalactan by gas chromatography and nuclear magnetic resonance spectrometry (NMR). NMR data revealed the glycosidic linkages and their locations in backbone and branches. The precise structure was putatively identified as below, and it was different to those commonly occurred arabinogalactans. The molecular weight was determined to be 2.4 × 10(6)Da by gel permeation chromatography.
    Matched MeSH terms: Polysaccharides/chemistry*
  7. Cui X, Zhao X, Zeng J, Loh SK, Choo YM, Liu D
    Bioresour Technol, 2014 Aug;166:584-91.
    PMID: 24956030 DOI: 10.1016/j.biortech.2014.05.102
    Oil palm empty fruit bunch (EFB) was pretreated by Formiline process to overcome biomass recalcitrance and obtain hemicellulosic syrup and lignin. Higher formic acid concentration led to more lignin removal but also higher degree of cellulose formylation. Cellulose digestibility could be well recovered after deformylation with a small amount of lime. After digested by enzyme loading of 15 FPU+10 CBU/g solid for 48 h, the polysaccharide conversion could be over 90%. Simultaneous saccharification and fermentation (SSF) results demonstrated that ethanol concentration reached 83.6 g/L with approximate 85% of theoretic yield when performed at an initial dry solid consistency of 20%. A mass balance showed that via Formiline pretreatment 0.166 kg of ethanol could be produced from 1 kg of dry EFB with co-production of 0.14 kg of high-purity lignin and 5.26 kg hemicellulosic syrup containing 2.8% xylose. Formiline pretreatment thus can be employed as an entry for biorefining of EFB.
    Matched MeSH terms: Polysaccharides/chemistry*
  8. Mirhosseini H, Amid BT
    Molecules, 2012 May 29;17(6):6465-80.
    PMID: 22643356 DOI: 10.3390/molecules17066465
    Durian seed is an agricultural biomass waste of durian fruit. It can be a natural plant source of non-starch polysaccharide gum with potential functional properties. The main goal of the present study was to investigate the effect of chemical extraction variables (i.e., the decolouring time, soaking temperature and soaking time) on the physicochemical properties of durian seed gum. The physicochemical and functional properties of chemically-extracted durian seed gum were assessed by determining the particle size and distribution, solubility and the water- and oil-holding capacity (WHC and OHC). The present work revealed that the soaking time should be considered as the most critical extraction variable affecting the physicochemical properties of crude durian seed gum.
    Matched MeSH terms: Polysaccharides/chemistry*
  9. Gannasin SP, Adzahan NM, Hamzah MY, Mustafa S, Muhammad K
    Food Chem, 2015 Sep 1;182:292-301.
    PMID: 25842340 DOI: 10.1016/j.foodchem.2015.03.010
    Tamarillo (Solanum betaceum Cav.) is an underutilised fruit in Malaysia. The fruit, however, contains good proportions of soluble fibre, protein, starch, anthocyanins and carotenoids. Amongst the fruits, only tamarillo mesocarp contains both polar (anthocyanins) and non-polar (carotenoids) pigments. The ability to retain both polar and non-polar pigments in the mesocarp could be related to the unique properties of its hydrocolloids. To understand the pigment-hydrocolloid interaction in the fruit, information on the physicochemical characteristics of the hydrocolloids is required. Therefore, hydrocolloids from the anthocyanin-rich seed mucilage fraction of the tamarillo and its carotenoid-rich pulp fraction were extracted and characterised. Water and 1% citric acid were used to extract the seed mucilage hydrocolloid while 72% ethanol and 20mM HEPES buffer were used for pulp hydrocolloid extraction. Seed mucilage hydrocolloid was primarily composed of arabinogalactan protein-associated pectin whereas pulp hydrocolloid was composed of hemicellulosic polysaccharides with some naturally interacting proteins and neutral polysaccharides.
    Matched MeSH terms: Polysaccharides/chemistry*
  10. Kimura Y, Yoshiie T, Kit WK, Maeda M, Kimura M, Tan SH
    Biosci Biotechnol Biochem, 2003 Oct;67(10):2232-9.
    PMID: 14586113
    The pollen of oil palm (Elaeis guineensis Jacq.) is a strong allergen and causes severe pollinosis in Malaysia and Singapore. In the previous study (Biosci. Biotechnol. Biochem., 64, 820-827 (2002)), from the oil palm pollens, we purified an antigenic glycoprotein (Ela g Bd 31 K), which is recognized by IgE from palm pollinosis patients. In this report, we describe the structural analysis of sugar chains linked to palm pollen glycoproteins to confirm the ubiquitous occurrence of antigenic N-glycans in the allergenic pollen. N-Glycans liberated from the pollen glycoprotein mixture by hydrazinolysis were labeled with 2-aminopyridine followed by purification with a combination of size-fractionation HPLC and reversed-phase HPLC. The structures of the PA-sugar chains were analyzed by a combination of two-dimensional sugar chain mapping, electrospray ionization mass spectrometry (ESI-MS), and tandem MS analysis, as well as exoglycosidase digestions. The antigenic N-glycan bearing alpha1-3 fucose and/or beta1-2 xylose residues accounts for 36.9% of total N-glycans: GlcNAc2Man3Xyl1Fuc1GlcNAc2 (24.6%), GlcNAc2Man3Xyl1GlcNAc2 (4.4%), Man3Xyl1Fuc1-GlcNAc2 (1.1%), GlcNAc1Man3Xyl1Fuc1GlcNAc2 (5.6%), and GlcNAc1Man3Xyl1GlcNAc2 (1.2%). The remaining 63.1% of the total N-glycans belong to the high-mannose type structure: Man9GlcNAc2 (5.8%), Man8GlcNAc2 (32.1%), Man7GlcNAc2 (19.9%), Man6GlcNAc2 (5.3%).
    Matched MeSH terms: Polysaccharides/chemistry*
  11. Khursheed R, Singh SK, Gulati M, Wadhwa S, Kapoor B, Pandey NK, et al.
    Int J Biol Macromol, 2021 Jul 31;183:1630-1639.
    PMID: 34015408 DOI: 10.1016/j.ijbiomac.2021.05.064
    Ganoderma lucidium extract powder (GLEP) contains various polysaccharides which are well known for their antioxidant and anti-inflammatory actions. Probiotics (PB) are well-established for providing a plethora of health benefits. Hence, use of mushroom polysaccharides and probiotics as carriers to solidify liquisolid formulation is anticipated to function as functional excipients i.e. as adsorbent that may provide therapeutic benefits. Quercetin (QUR) has been used as model lipophilic drug in this study. QUR loaded liquisolid compacts (LSCs) were formulated using Tween 80 as solvent. These were further solidified using a combination of PB and GLEP as carriers. Aerosil-200 (A-200) was used as coating agent. The formulation exhibited very good flow characteristics. Dissolution rate of raw QUR was found to be less than 10% in 60 min while in case of QUR loaded LSCs, more than 90% drug release was observed within 5 min. Absence of crystalline peaks of QUR in the DSC and PXRD reports of LSCs and their porous appearance in SEM micrographs indicate that QUR was successfully incorporated in the LSCs. The developed formulation was found to be stable on storage under accelerated stability conditions.
    Matched MeSH terms: Fungal Polysaccharides/chemistry*
  12. Chen L, Wang Z, Zhang B, Ge M, Ng H, Niu Y, et al.
    Carbohydr Polym, 2019 Feb 01;205:271-278.
    PMID: 30446105 DOI: 10.1016/j.carbpol.2018.10.070
    Carbon and nitrogen sources in culture medium of Antrodia cinnamomea were optimized to eliminate the interference of exterior macromolecules on exopolysaccharide (EPS) yield by submerged fermentation. The results suggested that culture medium containing 50 g/L of glucose and 20 g/L of yeast extract as the optimal carbon and nitrogen sources could produce 1.03 g/L of exopolysaccharides. After purification, two heteropolysaccharides (AC-EPS1 and AC-EPS2) were obtained and characterized to provide the basic structure information. As the main component of the produced EPS, AC-EPS2 (accounting for 89.63%) was mainly composed of galactose (87.42%) with Mw (molecular weight) and R.M.S. (root-mean-square) radius of 1.18 × 105 g/mol and 25.3 nm, respectively. Furthermore, the spherical and flexible chain morphologies of EPS were observed in different solvents by TEM. The structural and morphological information of purified EPS were significant for further study on their structure-activity relationship and related applications.
    Matched MeSH terms: Polysaccharides/chemistry*
  13. Corrie L, Gulati M, Awasthi A, Vishwas S, Kaur J, Khursheed R, et al.
    Chem Biol Interact, 2022 Dec 01;368:110238.
    PMID: 36306865 DOI: 10.1016/j.cbi.2022.110238
    Polysaccharides (PS) represent a broad class of polymer-based compounds that have been extensively researched as therapeutics and excipients for drug delivery. As pharmaceutical carriers, PS have mostly found their use as adsorbents, suspending agents, as well as cross-linking agents for various formulations such as liposomes, nanoparticles, nanoemulsions, nano lipid carriers, microspheres etc. This is due to inherent properties of PS such as porosity, steric stability and swellability, insolubility in pH. There have been emerging reports on the use of PS as therapeutic agent due to its anti-inflammatory and anti-oxidative properties for various diseases. In particular, for Crohn's disease, ulcerative colitis and inflammatory bowel disease. However, determining the dosage, treatment duration and effective technology transfer of these therapeutic moieties have not occurred. This is due to the fact that PS are still at a nascent stage of development to a full proof therapy for a particular disease. Recently, a combination of polysaccharide which act as a prebiotic and a probiotic have been used as a combination to treat various intestinal and colorectal (CRC) related diseases. This has proven to be beneficial, has shown good in vivo correlation and is well reported. The present review entails a detailed description on the role of PS used as a therapeutic agent and as a formulation pertaining to gastrointestinal diseases.
    Matched MeSH terms: Polysaccharides/chemistry
  14. Muhamad II, Zulkifli N, Selvakumaran SA, Lazim NAM
    Curr Pharm Des, 2019;25(11):1147-1162.
    PMID: 31258069 DOI: 10.2174/1381612825666190618152133
    BACKGROUND: In recent decades, there has been an increased interest in the utilization of polysaccharides showing biological activity for various novel applications owing to their biocompatibility, biodegradability, non-toxicity, and some specific therapeutic activities. Increasing studies have started in the past few years to develop algal polysaccharides-based biomaterials for various applications.

    METHODS: Saccharide mapping or enzymatic profiling plays a role in quality control of polysaccharides. Whereby, in vitro and in vivo tests as well as toxicity level discriminating polysaccharides biological activities. Extraction and purification methods are performed in obtaining algal derived polysaccharides followed by chromatographic profiles of their active compounds, structural features, physicochemical properties, and reported biological activities.

    RESULTS: Marine algae are capable of synthesizing Glycosaminoglycans (GAGs) and non-GAGs or GAG mimetics such as sulfated glycans. The cell walls of algae are rich in sulfated polysaccharides, including alginate, carrageenan, ulvan and fucoidan. These biopolymers are widely used algal-derived polysaccharides for biological and biomedical applications due to their biocompatibility and availability. They constitute biochemical compounds that have multi-functionalization, therapeutic potential and immunomodulatory abilities, making them promising bioactive products and biomaterials with a wide range of biomedical applications.

    CONCLUSION: Algal-derived polysaccharides with clearly elucidated compositions/structures, identified cellular activities, as well as desirable physical properties have shown the potential that may create new opportunities. They could be maximally exploited to serve as therapeutic tools such as immunoregulatory agents or drug delivery vehicles. Hence, novel strategies could be applied to tailor multi-functionalization of the polysaccharides from algal species with vast biomedical application potentials.

    Matched MeSH terms: Polysaccharides/chemistry*
  15. Shobana N, Prakash P, Samrot AV, Jane Cypriyana PJ, Kajal P, Sathiyasree M, et al.
    Molecules, 2022 Jun 09;27(12).
    PMID: 35744846 DOI: 10.3390/molecules27123720
    Plant gums are bio-organic substances that are derived from the barks of trees. They are biodegradable and non-adverse complex polysaccharides that have been gaining usage in recent years due to a number of advantages they contribute to various applications. In this study, gum was collected from Moringa oleifera and Azadirachta indica trees, then dried and powdered. Characterizations of gum polysaccharides were performed using TLC, GC-MS, NMR, etc., and sugar molecules such as glucose and xylose were found to be present. Effects of the gums on Abelmoschus esculentus growth were observed through root growth, shoot growth, and biomass content. The exposure of the seeds to the plant gums led to bio stimulation in the growth of the plants. Poor quality soil was exposed to the gum polysaccharide, where the polysaccharide was found to improve soil quality, which was observed through soil analysis and SEM analysis of soil porosity and structure. Furthermore, the plant gums were also found to have bio-pesticidal activity against mealybugs, which showed certain interstitial damage evident through histopathological analysis.
    Matched MeSH terms: Polysaccharides/chemistry
  16. Niu J, Shang M, Li X, Sang S, Chen L, Long J, et al.
    Crit Rev Food Sci Nutr, 2024;64(33):12487-12499.
    PMID: 37665600 DOI: 10.1080/10408398.2023.2253542
    Tea polyphenols (TPs) are the most important active component of tea and have become a research focus among natural products, thanks to their antioxidant, lipid-lowering, liver-protecting, anti-tumor, and other biological activities. Polyphenols can interact with other food components, such as protein, polysaccharides, lipids, and metal ions to further improve the texture, flavor, and sensory quality of food, and are widely used in food fields, such as food preservatives, antibacterial agents and food packaging. However, the instability of TPs under conditions such as light or heat and their low bioavailability in the gastrointestinal environment also hinder their application in food. In this review, we summarized the health benefits of TPs. In order to better use TPs in food, we analyzed the form and mechanism of interaction between TPs and main food components, such as polysaccharides and proteins. Moreover, we reviewed research into optimizing the applications of TPs in food by bio-based delivery systems, such as liposomes, nanoemulsions, and nanoparticles, so as to improve the stability and bioactivity of TPs in food application. As an effective active ingredient, TPs have great potential to be applied in functional food to produce benefits for human health.
    Matched MeSH terms: Polysaccharides/chemistry
  17. Huang D, Li Y, Cui F, Chen J, Sun J
    Carbohydr Polym, 2016 Feb 10;137:701-708.
    PMID: 26686182 DOI: 10.1016/j.carbpol.2015.10.102
    A novel polysaccharide-peptide complex CNP-1-2 with molecular weight of 9.17 × 10(4) Da was obtained from Clinacanthus nutans Lindau leaves by hot water extraction, ethanol precipitation, and purification with Superdex 200 and DEAE-Sepharose Fast Flow column chromatography. CNP-1-2 exhibited the highest growth inhibitory effect on human gastric cancer cells SGC-7901 with inhibition ratio of 92.34% and stimulated activation of macrophages with NO secretion level of 47.53 μmol/L among the polysaccharide fractions. CNP-1-2 comprised approximately 87.25% carbohydrate and 9.37% protein. Monosaccharide analysis suggested that CNP-1-2 was composed of L-rhamnose, l-arabinose, D-mannose, D-glucose and D-galactose with a molar ratio of 1.30:1.00:2.56:4.95:5.09. Methylation analysis, FT-IR, and (1)H NMR spectroscopy analysis revealed that CNP-1-2 might have a backbone consisting of 1,4-linked Glcp, 1,3-linked Glcp, 1,3-linked Manp, 1,4-linked Galp, 1,2,6-linked Galp and 1,2,6-linked Galp. Its side chain might be composed of 1-linked Araf, 1,6-linked Galp and 1-linked Rhap residues. AFM (atomic force micrograph) analysis revealed that CNP-1-2 had the molecular aggregation along with branched and entangled structure.
    Matched MeSH terms: Polysaccharides/chemistry*
  18. Sabiha-Hanim S, Mohd Noor MA, Rosma A
    Carbohydr Polym, 2015 Jan 22;115:533-9.
    PMID: 25439929 DOI: 10.1016/j.carbpol.2014.08.087
    Steam explosion of oil palm frond has been carried out under different temperatures between 180 and 210°C for 4 min (severity of 2.96-3.84) after impregnation of the frond chips with water or KOH solution. The effects of impregnation and steam explosion conditions of oil palm fronds on the water soluble fraction and insoluble fraction were investigated. The maximum yield of hemicelluloses in water soluble fractions recovered was 23.49% and 25.33% for water and KOH impregnation, treated with steam explosion at temperature of 210°C (severity of 3.84) with a fractionation efficiency of 77.30% and 83.32%, respectively. Under this condition, the water insoluble fractions contained celluloses at 60.83% and 64.80% for water and KOH impregnation, respectively. The steam explosion temperature of 210°C for 4 min (logR(o) 3.84) was found to be the best condition in the extraction of hemicelluloses from OPF for both types of impregnation.
    Matched MeSH terms: Polysaccharides/chemistry*
  19. Then YY, Ibrahim NA, Zainuddin N, Ariffin H, Yunus WM, Chieng BW
    Int J Mol Sci, 2014;15(9):15344-57.
    PMID: 25177865 DOI: 10.3390/ijms150915344
    In this paper, superheated steam (SHS) was used as cost effective and green processing technique to modify oil palm mesocarp fiber (OPMF) for biocomposite applications. The purpose of this modification was to promote the adhesion between fiber and thermoplastic. The modification was carried out in a SHS oven at various temperature (200-230 °C) and time (30-120 min) under normal atmospheric pressure. The biocomposites from SHS-treated OPMFs and poly(butylene succinate) (PBS) at a weight ratio of 70:30 were prepared by melt blending technique. The mechanical properties and dimensional stability of the biocomposites were evaluated. This study showed that the SHS treatment increased the roughness of the fiber surface due to the removal of surface impurities and hemicellulose. The tensile, flexural and impact properties, as well as dimensional stability of the biocomposites were markedly enhanced by the presence of SHS-treated OPMF. Scanning electron microscopy analysis showed improvement of interfacial adhesion between PBS and SHS-treated OPMF. This work demonstrated that SHS could be used as an eco-friendly and sustainable processing method for modification of OPMF in biocomposite fabrication.
    Matched MeSH terms: Polysaccharides/chemistry*
  20. Lee HV, Hamid SB, Zain SK
    ScientificWorldJournal, 2014;2014:631013.
    PMID: 25247208 DOI: 10.1155/2014/631013
    Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate's application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein.
    Matched MeSH terms: Polysaccharides/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links