Displaying all 13 publications

Abstract:
Sort:
  1. Wetthasinghe L, Ng HF, Ngeow YF, Chew KS, Lee WS
    Funct Integr Genomics, 2024 Jun 24;24(4):115.
    PMID: 38910215 DOI: 10.1007/s10142-024-01393-0
    Matched MeSH terms: Real-Time Polymerase Chain Reaction/standards
  2. Thanh TT, Anh NT, Tham NT, Van HM, Sabanathan S, Qui PT, et al.
    Virol J, 2015 Jun 09;12:85.
    PMID: 26050791 DOI: 10.1186/s12985-015-0316-2
    BACKGROUND: Hand foot and mouth disease (HFMD) is a disease of public health importance across the Asia-Pacific region. The disease is caused by enteroviruses (EVs), in particular enterovirus A71 (EV-A71). In EV-A71-associated HFMD, the infection is sometimes associated with severe manifestations including neurological involvement and fatal outcome. The availability of a robust diagnostic assay to distinguish EV-A71 from other EVs is important for patient management and outbreak response.

    METHODS: We developed and validated an internally controlled one-step single-tube real-time RT-PCR in terms of sensitivity, linearity, precision, and specificity for simultaneous detection of EVs and EV-A71. Subsequently, the assay was then applied on throat and rectal swabs sampled from 434 HFMD patients.

    RESULTS: The assay was evaluated using both plasmid DNA and viral RNA and has shown to be reproducible with a maximum assay variation of 4.41 % and sensitive with a limit of detection less than 10 copies of target template per reaction, while cross-reactivity with other EV serotypes was not observed. When compared against a published VP1 nested RT-PCR using 112 diagnostic throat and rectal swabs from 112 children with a clinical diagnosis of HFMD during 2014, the multiplex assay had a higher sensitivity and 100 % concordance with sequencing results which showed EVs in 77/112 (68.8 %) and EV-A71 in 7/112 (6.3 %). When applied to clinical diagnostics for 322 children, the assay detected EVs in throat swabs of 257/322 (79.8 %) of which EV-A71 was detected in 36/322 (11.2 %) children. The detection rate increased to 93.5 % (301/322) and 13.4 % (43/322) for EVs and EV-A71, respectively, when rectal swabs from 65 throat-negative children were further analyzed.

    CONCLUSION: We have successfully developed and validated a sensitive internally controlled multiplex assay for rapid detection of EVs and EV-A71, which is useful for clinical management and outbreak control of HFMD.

    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/standards; Multiplex Polymerase Chain Reaction/standards; Real-Time Polymerase Chain Reaction/standards
  3. Teoh BT, Sam SS, Tan KK, Johari J, Abd-Jamil J, Hooi PS, et al.
    Sci Rep, 2016 06 09;6:27663.
    PMID: 27278716 DOI: 10.1038/srep27663
    Timely and accurate dengue diagnosis is important for differential diagnosis and immediate implementation of appropriate disease control measures. In this study, we compared the usefulness and applicability of NS1 RDT (NS1 Ag Strip) and qRT-PCR tests in complementing the IgM ELISA for dengue diagnosis on single serum specimen (n = 375). The NS1 Ag Strip and qRT-PCR showed a fair concordance (κ = 0.207, p = 0.001). While the NS1 Ag Strip showed higher positivity than qRT-PCR for acute (97.8% vs. 84.8%) and post-acute samples (94.8% vs. 71.8%) of primary infection, qRT-PCR showed higher positivity for acute (58.1% vs. 48.4%) and post-acute (50.0% vs.41.4%) samples in secondary infection. IgM ELISA showed higher positivity in samples from secondary dengue (74.2-94.8%) than in those from primary dengue (21.7-64.1%). More primary dengue samples showed positive with combined NS1 Ag Strip/IgM ELISA (99.0% vs. 92.8%) whereas more secondary samples showed positive with combined qRT-PCR/IgM ELISA (99.4% vs. 96.2%). Combined NS1 Ag Strip/IgM ELISA is a suitable combination tests for timely and accurate dengue diagnosis on single serum specimen. If complemented with qRT-PCR, combined NS1 Ag Strip/IgM ELISA would improve detection of secondary dengue samples.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction/standards
  4. Yaacob NS, Bakar RA, Norazmi MN
    Ann Clin Lab Sci, 2004;34(1):47-56.
    PMID: 15038667
    The polymerase chain reaction (PCR) is useful for amplifying specific mRNAs, particularly those present in low copy numbers. However, due to the exponential nature of the amplification process, PCR cannot readily be used to quantify gene expression. A competitive PCR technique was developed to address this shortcoming. An internal standard that is 100% homologous to, but shorter than, the target gene was constructed. The practicality of the method was demonstrated by determining the expression levels of a human transcription factor, peroxisome proliferator-activated receptor gamma 1 (hPPARgamma1) which is normally present in low copy numbers in selected cells. A mock system was used to test the accuracy and sensitivity of the method, which was subsequently used to determine the expression of this receptor in lipopolysaccharide (LPS)-activated monocytes, which are known to express hPPARgamma1 differentially during cellular activation. Densitometric analysis showed that the competitive PCR method reliably estimated the expression levels of hPPARgamma1 at the attomole (10(-18)) level in monocytes.
    Matched MeSH terms: Polymerase Chain Reaction/standards
  5. Thong KL, Teh CS, Chua KH
    Trop Biomed, 2014 Dec;31(4):689-97.
    PMID: 25776594 MyJurnal
    The present study aims to develop a system which consists of four pairs of primers that specifically detects Salmonella spp., Salmonella serovar Typhi and Salmonella serovar Paratyphi A with an internal amplification control. The system, when applied in Polymerase Chain Reaction (PCR) under specific conditions, reaction mixture and cycling temperatures produced four bands; 784 bp, 496 bp, 332 bp and 187 bp. The DNA band 784 bp is present in all Salmonella spp., while the bands of 496 bp and 332 bp are only present in S. Paratyphi A and S. Typhi, respectively. An internal amplification control as indicated by the 187 bp shows the system is working in optimum condition in all the tests. This multiplex PCR was evaluated on 241 bacterial cultures and 691 naturally contaminated samples. Overall, this multiplex PCR detection system provides a single step for simultaneous detection of DNAs of Salmonella spp., S. Typhi and S. Paratyphi A.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction/standards
  6. Al-Talib H, Yean CY, Al-Khateeb A, Hasan H, Ravichandran M
    J Microbiol Immunol Infect, 2014 Dec;47(6):484-90.
    PMID: 23927820 DOI: 10.1016/j.jmii.2013.06.004
    Methicillin-resistant Staphylococcus aureus (MRSA) is a major pathogen responsible for significant numbers of nosocomial and community-acquired infections worldwide. Molecular diagnosis for MRSA nasal carriers is increasingly important for rapid detection and screening of MRSA colonization because the conventional methods are time consuming and labor intensive. However, conventional polymerase chain reaction (PCR) tests still require cold-chain storage as well as trained personnel, which makes them unsuitable for rapid high-throughput analysis. The aim of this study was to develop a thermostabilized PCR assay for MRSA in a ready-to-use form that requires no cold chain.
    Matched MeSH terms: Polymerase Chain Reaction/standards
  7. Embong Z, Wan Hitam WH, Yean CY, Rashid NH, Kamarudin B, Abidin SK, et al.
    BMC Ophthalmol, 2008;8:7.
    PMID: 18445283 DOI: 10.1186/1471-2415-8-7
    The sensitivity and specificity of 18S rRNA polymerase chain reaction (PCR) in the detection of fungal aetiology of microbial keratitis was determined in thirty patients with clinical diagnosis of microbial keratitis.
    Matched MeSH terms: Polymerase Chain Reaction/standards
  8. Chua AL, Elina HT, Lim BH, Yean CY, Ravichandran M, Lalitha P
    J Med Microbiol, 2011 Apr;60(Pt 4):481-485.
    PMID: 21183596 DOI: 10.1099/jmm.0.027433-0
    Vibrio cholerae has caused severe outbreaks of cholera worldwide with thousands of recorded deaths annually. Molecular diagnosis for cholera has become increasingly important for rapid detection of cholera as the conventional methods are time-consuming and labour intensive. However, traditional PCR tests still require cold-chain transportation and storage as well as trained personnel to perform, which makes them user-unfriendly. The aim of this study was to develop a thermostabilized triplex PCR test for cholera which is in a ready-to-use form and requires no cold chain. The PCR test specifically detects both toxigenic and non-toxigenic strains of V. cholerae based on the cholera toxin A (ctxA) and outer-membrane lipoprotein (lolB) genes. The thermostabilized triplex PCR also incorporates an internal amplification control that helps to check for PCR inhibitors in samples. PCR reagents and the specific primers were lyophilized into a pellet form in the presence of trehalose, which acts as an enzyme stabilizer. The triplex PCR was validated with 174 bacteria-spiked stool specimens and was found to be 100 % sensitive and specific. The stability of the thermostabilized PCR was evaluated using the Q10 method and it was found to be stable for approximately 7 months at 24 °C. The limit of detection of the thermostabilized triplex PCR assay was 2×10(4) c.f.u. at the bacterial cell level and 100 pg DNA at the genomic DNA level, comparable to conventional PCR methods. In conclusion, a rapid thermostabilized triplex PCR assay was developed for detecting toxigenic and non-toxigenic V. cholerae which requires minimal pipetting steps and is cold chain-free.
    Matched MeSH terms: Polymerase Chain Reaction/standards
  9. Hossain MA, Ali ME, Hamid SB, Hossain SM, Asing, Nizar NN, et al.
    Food Chem, 2017 Jun 01;224:97-104.
    PMID: 28159299 DOI: 10.1016/j.foodchem.2016.12.062
    Replacement of beef by buffalo and vice versa is frequent in global markets, but their authentication is challenging in processed foods due to the fragmentation of most biomarkers including DNA. The shortening of target sequences through use of two target sites might ameliorate assay reliability because it is highly unlikely that both targets will be lost during food processing. For the first time, we report a tetraplex polymerase chain reaction (PCR) assay targeting two different DNA regions in beef (106 and 120-bp) and buffalo (90 and 138-bp) mitochondrial genes to discriminate beef and buffalo in processed foods. All targets were stable under boiling, autoclaving and microwave cooking conditions. A survey in Malaysian markets revealed 71% beef curries contained buffalo but there was no buffalo in beef burgers. The assay detected down to 0.01ng DNA and 1% meat in admixed and burger products.
    Matched MeSH terms: Polymerase Chain Reaction/standards
  10. Tan SC, Ismail MP, Duski DR, Othman NH, Bhavaraju VM, Ankathil R
    Cancer Invest, 2017 Mar 16;35(3):163-173.
    PMID: 28301252 DOI: 10.1080/07357907.2017.1278767
    This study aimed to identify the most stably expressed reference genes from a panel of 32 candidate genes for normalization of reverse transcription-quantitative real-time polymerase chain reaction data in cancerous and non-cancerous tissues of human uterine cervix. Overall, PUM1, YWHAZ, and RPLP0 were identified as the most stably expressed genes in paired cancerous and non-cancerous tissues. The results were further stratified by the state of malignancy of the tissues, histopathological type of the cancer, and the human papillomavirus-type.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction/standards*
  11. Pok KY, Squires RC, Tan LK, Takasaki T, Abubakar S, Hasebe F, et al.
    Western Pac Surveill Response J, 2015 Jun 30;6(2):73-81.
    PMID: 26306220 DOI: 10.5365/WPSAR.2015.6.1.017
    Accurate laboratory testing is a critical component of dengue surveillance and control. The objective of this programme was to assess dengue diagnostic proficiency among national-level public health laboratories in the World Health Organization (WHO) Western Pacific Region.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/standards*
  12. Chew CH, Lim YA, Lee PC, Mahmud R, Chua KH
    J Clin Microbiol, 2012 Dec;50(12):4012-9.
    PMID: 23035191 DOI: 10.1128/JCM.06454-11
    Malaria remains one of the major killers of humankind and persists to threaten the lives of more than one-third of the world's population. Given that human malaria can now be caused by five species of Plasmodium, i.e., Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale, and the recently included Plasmodium knowlesi, there is a critical need not only to augment global health efforts in malaria control but also, more importantly, to develop a rapid, accurate, species-sensitive/species-specific, and economically effective diagnostic method for malaria caused by these five species. Therefore, in the present study, a straightforward single-step hexaplex PCR system targeting five human Plasmodium 18S small-subunit rRNAs (ssu rRNAs) was designed, and the system successfully detected all five human malaria parasites. In addition, this system enables the differentiation of single infection as well as mixed infections up to the two-species level. This assay was validated with 50 randomly blinded test and 184 clinical samples suspected to indicate malaria. This hexaplex PCR system is not only an ideal alternative for routine malaria diagnosis in laboratories with conventional PCR machines but also adds value to diagnoses when there is a lack of an experienced microscopist or/and when the parasite morphology is confusing. Indeed, this system will definitely enhance the accuracy and accelerate the speed in the diagnosis of malaria, as well as improve the efficacy of malaria treatment and control, in addition to providing reliable data from epidemiological surveillance studies.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction/standards
  13. Dzaki N, Azzam G
    PLoS One, 2018;13(3):e0194664.
    PMID: 29554153 DOI: 10.1371/journal.pone.0194664
    Members of the Aedes genus of mosquitoes are widely recognized as vectors of viral diseases. Ae.albopictus is its most invasive species, and are known to carry viruses such as Dengue, Chikugunya and Zika. Its emerging importance puts Ae.albopictus on the forefront of genetic interaction and evolution studies. However, a panel of suitable reference genes specific for this insect is as of now undescribed. Nine reference genes, namely ACT, eEF1-γ, eIF2α, PP2A, RPL32, RPS17, PGK1, ILK and STK were evaluated. Expression patterns of the candidate reference genes were observed in a total of seventeen sample types, separated by stage of development and age. Gene stability was inferred from obtained quantification data through three widely cited evaluation algorithms i.e. BestKeeper, geNorm, and NormFinder. No single gene showed a satisfactory degree of stability throughout all developmental stages. Therefore, we propose combinations of PGK and ILK for early embryos; RPL32 and RPS17 for late embryos, all four larval instars, and pupae samples; eEF1-γ with STK for adult males; eEF1-γ with RPS17 for non-blood fed females; and eEF1-γ with eIF2α for both blood-fed females and cell culture. The results from this study should be able to provide a more informed selection of normalizing genes during qPCR in Ae.albopictus.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction/standards*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links