Displaying publications 1 - 20 of 39 in total

Abstract:
Sort:
  1. Ullah H, Wilfred CD, Shaharun MS
    Environ Technol, 2019 Dec;40(28):3705-3712.
    PMID: 29873603 DOI: 10.1080/09593330.2018.1485751
    The present work reports the extraction of phenolic compounds from Polygonum minus using ionic liquid as extracting solvent. In this work, 1-Butyl-3-methylimidazolium hydrogen sulfate [BMIM][HSO4] was used for the extraction of bioactive compounds. Accordingly, ionic liquids based microwave-assisted extraction treatment for separating of bioactive compounds from polygonum minus was first performed in the present study. The results obtained in this work have high extraction yield in comparison with conventional solvent. UV/Vis results showed that microwave synthesis was fast, well dispersed and nanosized copper nanoparticle (CuNPs) in comparison with conventional synthesis. CuNPs was characterised by X-Rays diffractometer (XRD), Fourier transform infrared (FTIR), dynamic light scattering (DLS), field emission scanning electron microscopy combined with energy dispersive x-rays (FESEM-EDX), and thermogravimetric analysis (TGA). All the instrumental analyses confirmed the particles were nanosized. Furthermore, the antibacterial activity of as-synthesised CuNPs showed effective inhibitory zone against three different bacteria. The photocatalytic degradation of copper nanoparticles was studied using methylene blue (MB) and methyl orange (MO) dyes under UV light and degraded 99.9% within short time 8 and 7 min.
    Matched MeSH terms: Polygonum*
  2. Starkenmann C, Luca L, Niclass Y, Praz E, Roguet D
    J Agric Food Chem, 2006 Apr 19;54(8):3067-71.
    PMID: 16608232
    Polygonum odoratum Lour. has been reclassified as Persicaria odorata (Lour.) Soják [Wilson, K. L. Polygonum sensu lato (Polygonaceae) in Australia. Telopea 1988, 3, 177-182]; other synonyms currently used are Vietnamese mint or Vietnamese coriander and, in Malaysia, Daun Laksa or Laksa plant. The aerial parts of Laksa plant are highly aromatic, and they contain many organic compounds such as (Z)-3-hexenal, (Z)-3-hexenol, decanal, undecanal, and dodecanal that are typical for green, citrus, orange peel, and coriander odors. In addition to these aldehydes, 3-sulfanyl-hexanal and 3-sulfanyl-hexan-1-ol were discovered for the first time in this herb. The fresh leaves are pungent when they are chewed, although the active compound has never been identified. The pungency of Persicaria hydropiper (L.) Spach (formerly Polygonum hydropiper L., synonym water pepper) is produced by polygodial, a 1,4-dialdehyde derived from drimane terpenoids. We also identified polygodial as the active pungent compound in P. odorata (Lour.) Soják.
    Matched MeSH terms: Polygonum/chemistry*
  3. Cherian S, Hacisayidli KM, Kurian R, Mathews A
    J Pharm Pharmacol, 2023 Mar 12;75(3):301-327.
    PMID: 36757388 DOI: 10.1093/jpp/rgac105
    OBJECTIVES: Increasing literature data have suggested that the genus Polygonum L. possesses pharmacologically important plant secondary metabolites. These bioactive compounds are implicated as effective agents in preclinical and clinical practice due to their pharmacological effects such as anti-inflammatory, anticancer, antidiabetic, antiaging, neuroprotective or immunomodulatory properties among many others. However, elaborate pharmacological and clinical data concerning the bioavailability, tissue distribution pattern, dosage and pharmacokinetic profiles of these compounds are still scanty.

    KEY FINDINGS: The major bioactive compounds implicated in the therapeutic effects of Polygonum genus include phenolic and flavonoid compounds, anthraquinones and stilbenes, such as quercetin, resveratrol, polydatin and others, and could serve as potential drug leads or as adjuvant agents. Data from in-silico network pharmacology and computational molecular docking studies are also highly helpful in identifying the possible drug target of pathogens or host cell machinery.

    SUMMARY: We provide an up-to-date overview of the data from pharmacodynamic, pharmacokinetic profiles and preclinical (in-vitro and in-vivo) investigations and the available clinical data on some of the therapeutically important compounds of genus Polygonum L. and their medical interventions, including combating the outbreak of the COVID-19 pandemic.

    Matched MeSH terms: Polygonum*
  4. Sayuti NH, Zulkefli N, Tan JK, Saad N, Baharum SN, Hamezah HS, et al.
    Molecules, 2023 Sep 20;28(18).
    PMID: 37764502 DOI: 10.3390/molecules28186726
    Neuronal models are an important tool in neuroscientific research. Hydrogen peroxide (H2O2), a major risk factor of neuronal oxidative stress, initiates a cascade of neuronal cell death. Polygonum minus Huds, known as 'kesum', is widely used in traditional medicine. P. minus has been reported to exhibit a few medicinal and pharmacological properties. The current study aimed to investigate the neuroprotective effects of P. minus ethanolic extract (PMEE) on H2O2-induced neurotoxicity in SH-SY5Y cells. LC-MS/MS revealed the presence of 28 metabolites in PMEE. Our study showed that the PMEE provided neuroprotection against H2O2-induced oxidative stress by activating the Nrf2/ARE, NF-κB/IκB and MAPK signaling pathways in PMEE pre-treated differentiated SH-SY5Y cells. Meanwhile, the acetylcholine (ACH) level was increased in the oxidative stress-induced treatment group after 4 h of exposure with H2O2. Molecular docking results with acetylcholinesterase (AChE) depicted that quercitrin showed the highest docking score at -9.5 kcal/mol followed by aloe-emodin, afzelin, and citreorosein at -9.4, -9.3 and -9.0 kcal/mol, respectively, compared to the other PMEE's identified compounds, which show lower docking scores. The results indicate that PMEE has neuroprotective effects on SH-SY5Y neuroblastoma cells in vitro. In conclusion, PMEE may aid in reducing oxidative stress as a preventative therapy for neurodegenerative diseases.
    Matched MeSH terms: Polygonum*
  5. Bunawan H, Choong CY, Md-Zain BM, Baharum SN, Noor NM
    Int J Mol Sci, 2011;12(11):7626-34.
    PMID: 22174621 DOI: 10.3390/ijms12117626
    Plastid trnL-trnF and nuclear ribosomal ITS sequences were obtained from selected wild-type individuals of Polygonum minus Huds. in Peninsular Malaysia. The 380 bp trnL-trnF sequences of the Polygonum minus accessions were identical. Therefore, the trnL-trnF failed to distinguish between the Polygonum minus accessions. However, the divergence of ITS sequences (650 bp) among the Polygonum minus accessions was 1%, indicating that these accessions could be distinguished by the ITS sequences. A phylogenetic relationship based on the ITS sequences was inferred using neighbor-joining, maximum parsimony and Bayesian inference. All of the tree topologies indicated that Polygonum minus from Peninsular Malaysia is unique and different from the synonymous Persicaria minor (Huds.) Opiz and Polygonum kawagoeanum Makino.
    Matched MeSH terms: Polygonum/classification*; Polygonum/genetics*
  6. Rusdi NA, Goh HH, Sabri S, Ramzi AB, Mohd Noor N, Baharum SN
    Molecules, 2018 06 06;23(6).
    PMID: 29882808 DOI: 10.3390/molecules23061370
    Polygonum minus (syn. Persicaria minor) is a herbal plant that is well known for producing sesquiterpenes, which contribute to its flavour and fragrance. This study describes the cloning and functional characterisation of PmSTPS1 and PmSTPS2, two sesquiterpene synthase genes that were identified from P. minus transcriptome data mining. The full-length sequences of the PmSTPS1 and PmSTPS2 genes were expressed in the E. coli pQE-2 expression vector. The sizes of PmSTPS1 and PmSTPS2 were 1098 bp and 1967 bp, respectively, with open reading frames (ORF) of 1047 and 1695 bp and encoding polypeptides of 348 and 564 amino acids, respectively. The proteins consist of three conserved motifs, namely, Asp-rich substrate binding (DDxxD), metal binding residues (NSE/DTE), and cytoplasmic ER retention (RxR), as well as the terpene synthase family N-terminal domain and C-terminal metal-binding domain. From the in vitro enzyme assays, using the farnesyl pyrophosphate (FPP) substrate, the PmSTPS1 enzyme produced multiple acyclic sesquiterpenes of β-farnesene, α-farnesene, and farnesol, while the PmSTPS2 enzyme produced an additional nerolidol as a final product. The results confirmed the roles of PmSTPS1 and PmSTPS2 in the biosynthesis pathway of P. minus, to produce aromatic sesquiterpenes.
    Matched MeSH terms: Polygonum/enzymology*; Polygonum/genetics
  7. Ee SF, Mohamed-Hussein ZA, Othman R, Shaharuddin NA, Ismail I, Zainal Z
    ScientificWorldJournal, 2014;2014:840592.
    PMID: 24678279 DOI: 10.1155/2014/840592
    Polygonum minus is an aromatic plant, which contains high abundance of terpenoids, especially the sesquiterpenes C15H24. Sesquiterpenes were believed to contribute to the many useful biological properties in plants. This study aimed to functionally characterize a full length sesquiterpene synthase gene from P. minus. P. minus sesquiterpene synthase (PmSTS) has a complete open reading frame (ORF) of 1689 base pairs encoding a 562 amino acid protein. Similar to other sesquiterpene synthases, PmSTS has two large domains: the N-terminal domain and the C-terminal metal-binding domain. It also consists of three conserved motifs: the DDXXD, NSE/DTE, and RXR. A three-dimensional protein model for PmSTS built clearly distinguished the two main domains, where conserved motifs were highlighted. We also constructed a phylogenetic tree, which showed that PmSTS belongs to the angiosperm sesquiterpene synthase subfamily Tps-a. To examine the function of PmSTS, we expressed this gene in Arabidopsis thaliana. Two transgenic lines, designated as OE3 and OE7, were further characterized, both molecularly and functionally. The transgenic plants demonstrated smaller basal rosette leaves, shorter and fewer flowering stems, and fewer seeds compared to wild type plants. Gas chromatography-mass spectrometry analysis of the transgenic plants showed that PmSTS was responsible for the production of β -sesquiphellandrene.
    Matched MeSH terms: Polygonum/classification; Polygonum/drug effects; Polygonum/enzymology*; Polygonum/genetics
  8. Ee SF, Oh JM, Mohd Noor N, Kwon TR, Mohamed-Hussein ZA, Ismail I, et al.
    Mol Biol Rep, 2013 Mar;40(3):2231-41.
    PMID: 23187733 DOI: 10.1007/s11033-012-2286-4
    The importance of plant secondary metabolites for both mankind and the plant itself has long been established. However, despite extensive research on plant secondary metabolites, plant secondary metabolism and its regulation still remained poorly characterized. In this present study, cDNA-amplified fragment length polymorphism (cDNA-AFLP) transcript profiling was applied to generate the expression profiles of Polygonum minus in response to salicylic acid (SA) and methyl jasmonate (MeJA) elicitations. This study reveals two different sets of genes induced by SA and MeJA, respectively where stress-related genes were proved to lead to the expression of genes involved in plant secondary metabolite biosynthetic pathways. A total of 98 transcript-derived fragments (TDFs) were up-regulated, including 46 from SA-treated and 52 from MeJA-treated samples. The cDNA-AFLP transcripts generated using 64 different Mse1/Taq1 primer combinations showed that treatments with SA and MeJA induced genes mostly involved in scavenging reactive oxygen species, including zeaxanthin epoxidase, cytosolic ascorbate peroxidase 1 and peroxidase. Of these stress-related genes, 15 % of other annotated TDFs are involved mainly in secondary metabolic processes where among these, two genes encoding (+)-delta cadinene synthase and cinnamoyl-CoA reductase were highlighted.
    Matched MeSH terms: Polygonum/drug effects*; Polygonum/genetics*
  9. Goh HH, Khairudin K, Sukiran NA, Normah MN, Baharum SN
    Plant Biol (Stuttg), 2016 Jan;18 Suppl 1:130-9.
    PMID: 26417881 DOI: 10.1111/plb.12403
    Temperature is one of the key factors in limiting the distribution of plants and controlling major metabolic processes. A series of simulated reciprocal transplant experiments were performed to investigate the effect of temperature on plant chemical composition. Polygonum minus of different lowland and highland origin were grown under a controlled environment with different temperature regimes to study the effects on secondary metabolites. We applied gas chromatography-mass spectrometry and liquid chromatography time-of-flight mass spectrometry to identify the chemical compounds. A total of 37 volatile organic compounds and 85 flavonoids were detected, with the largest response observed in the compositional changes of aldehydes and terpenes in highland plants under higher temperature treatment. Significantly less anthocyanidin compounds and larger amounts of flavonols were detected under higher temperature treatment. We also studied natural variation in the different plant populations growing under the same environment and identified compounds unique to each population through metabolite fingerprinting. This study shows that the origin of different plant populations influences the effects of temperature on chemical composition.
    Matched MeSH terms: Polygonum/metabolism*; Polygonum/chemistry
  10. Seman-Kamarulzaman AF, Mohamed-Hussein ZA, Ng CL, Hassan M
    PLoS One, 2016;11(8):e0161707.
    PMID: 27560927 DOI: 10.1371/journal.pone.0161707
    Juvenile Hormone III is of great concern due to negative effects on major developmental and reproductive maturation in insect pests. Thus, the elucidation of enzymes involved JH III biosynthetic pathway has become increasing important in recent years. One of the enzymes in the JH III biosynthetic pathway that remains to be isolated and characterized is farnesal dehydrogenase, an enzyme responsible to catalyze the oxidation of farnesal into farnesoic acid. A novel NAD+-farnesal dehydrogenase of Polygonum minus was purified (315-fold) to apparent homogeneity in five chromatographic steps. The purification procedures included Gigacap S-Toyopearl 650M, Gigacap Q-Toyopearl 650M, and AF-Blue Toyopearl 650ML, followed by TSK Gel G3000SW chromatographies. The enzyme, with isoelectric point of 6.6 is a monomeric enzyme with a molecular mass of 70 kDa. The enzyme was relatively active at 40°C, but was rapidly inactivated above 45°C. The optimal temperature and pH of the enzyme were found to be 35°C and 9.5, respectively. The enzyme activity was inhibited by sulfhydryl agent, chelating agent, and metal ion. The enzyme was highly specific for farnesal and NAD+. Other terpene aldehydes such as trans- cinnamaldehyde, citral and α- methyl cinnamaldehyde were also oxidized but in lower activity. The Km values for farnesal, citral, trans- cinnamaldehyde, α- methyl cinnamaldehyde and NAD+ were 0.13, 0.69, 0.86, 1.28 and 0.31 mM, respectively. The putative P. minus farnesal dehydrogenase that's highly specific towards farnesal but not to aliphatic aldehydes substrates suggested that the enzyme is significantly different from other aldehyde dehydrogenases that have been reported. The MALDI-TOF/TOF-MS/MS spectrometry further identified two peptides that share similarity to those of previously reported aldehyde dehydrogenases. In conclusion, the P. minus farnesal dehydrogenase may represent a novel plant farnesal dehydrogenase that exhibits distinctive substrate specificity towards farnesal. Thus, it was suggested that this novel enzyme may be functioning specifically to oxidize farnesal in the later steps of JH III pathway. This report provides a basic understanding for recombinant production of this particular enzyme. Other strategies such as adding His-tag to the protein makes easy the purification of the protein which is completely different to the native protein. Complete sequence, structure and functional analysis of the enzyme will be important for developing insect-resistant crop plants by deployment of transgenic plant.
    Matched MeSH terms: Polygonum/enzymology*; Polygonum/metabolism
  11. Rahnamaie-Tajadod R, Goh HH, Mohd Noor N
    J Plant Physiol, 2019 Sep;240:152994.
    PMID: 31226543 DOI: 10.1016/j.jplph.2019.152994
    Polygonum minus Huds. is a medicinal aromatic plant rich in terpenes, aldehydes, and phenolic compounds. Methyl jasmonate (MeJA) is a plant signaling molecule commonly applied to elicit stress responses to produce plant secondary metabolites. In this study, the effects of exogenous MeJA treatment on the composition of volatile organic compounds (VOCs) in P. minus leaves were investigated by using a metabolomic approach. Time-course changes in the leaf composition of VOCs on days 1, 3, and 5 after MeJA treatment were analyzed through solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS). The VOCs found in MeJA-elicited leaves were similar to those found in mock-treated leaves but varied in quantity at different time points. We focused our analysis on the content and composition of monoterpenes, sesquiterpenes, and green leaf volatiles (GLVs) within the leaf samples. Our results suggest that MeJA enhances the activity of biosynthetic pathways for aldehydes and terpenes in P. minus. Hence, the production of aromatic compounds in this medicinal herb can be increased by MeJA elicitation. Furthermore, the relationship between MeJA elicitation and terpene biosynthesis in P. minus was shown through SPME-GC-MS analysis of VOCs combined with transcriptomic analysis of MeJA-elicited P. minus leaves from our previous study.
    Matched MeSH terms: Polygonum/drug effects*; Polygonum/chemistry
  12. Ahmad-Sohdi NA, Seman-Kamarulzaman AF, Mohamed-Hussein ZA, Hassan M
    PLoS One, 2015;10(11):e0143310.
    PMID: 26600471 DOI: 10.1371/journal.pone.0143310
    Juvenile hormones have attracted attention as safe and selective targets for the design and development of environmentally friendly and biorational insecticides. In the juvenile hormone III biosynthetic pathway, the enzyme farnesol dehydrogenase catalyzes the oxidation of farnesol to farnesal. In this study, farnesol dehydrogenase was extracted from Polygonum minus leaves and purified 204-fold to apparent homogeneity by ion-exchange chromatography using DEAE-Toyopearl, SP-Toyopearl, and Super-Q Toyopearl, followed by three successive purifications by gel filtration chromatography on a TSK-gel GS3000SW. The enzyme is a heterodimer comprised of subunits with molecular masses of 65 kDa and 70 kDa. The optimum temperature and pH were 35°C and pH 9.5, respectively. Activity was inhibited by sulfhydryl reagents, metal-chelating agents and heavy metal ions. The enzyme utilized both NAD+ and NADP+ as coenzymes with Km values of 0.74 mM and 40 mM, respectively. Trans, trans-farnesol was the preferred substrate for the P. minus farnesol dehydrogenase. Geometrical isomers of trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol were also oxidized by the enzyme with lower activity. The Km values for trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol appeared to be 0.17 mM, 0.33 mM and 0.42 mM, respectively. The amino acid sequences of 4 tryptic peptides of the enzyme were analyzed by MALDI-TOF/TOF-MS spectrometry, and showed no significant similarity to those of previously reported farnesol dehydrogenases. These results suggest that the purified enzyme is a novel NAD(P)+-dependent farnesol dehydrogenase. The purification and characterization established in the current study will serve as a basis to provide new information for recombinant production of the enzyme. Therefore, recombinant farnesol dehydrogenase may provide a useful molecular tool in manipulating juvenile hormone biosynthesis to generate transgenic plants for pest control.
    Matched MeSH terms: Polygonum/enzymology*
  13. Roslan ND, Yusop JM, Baharum SN, Othman R, Mohamed-Hussein ZA, Ismail I, et al.
    Int J Mol Sci, 2012;13(3):2692-706.
    PMID: 22489118 DOI: 10.3390/ijms13032692
    P. minus is an aromatic plant, the leaf of which is widely used as a food additive and in the perfume industry. The leaf also accumulates secondary metabolites that act as active ingredients such as flavonoid. Due to limited genomic and transcriptomic data, the biosynthetic pathway of flavonoids is currently unclear. Identification of candidate genes involved in the flavonoid biosynthetic pathway will significantly contribute to understanding the biosynthesis of active compounds. We have constructed a standard cDNA library from P. minus leaves, and two normalized full-length enriched cDNA libraries were constructed from stem and root organs in order to create a gene resource for the biosynthesis of secondary metabolites, especially flavonoid biosynthesis. Thus, large-scale sequencing of P. minus cDNA libraries identified 4196 expressed sequences tags (ESTs) which were deposited in dbEST in the National Center of Biotechnology Information (NCBI). From the three constructed cDNA libraries, 11 ESTs encoding seven genes were mapped to the flavonoid biosynthetic pathway. Finally, three flavonoid biosynthetic pathway-related ESTs chalcone synthase, CHS (JG745304), flavonol synthase, FLS (JG705819) and leucoanthocyanidin dioxygenase, LDOX (JG745247) were selected for further examination by quantitative RT-PCR (qRT-PCR) in different P. minus organs. Expression was detected in leaf, stem and root. Gene expression studies have been initiated in order to better understand the underlying physiological processes.
    Matched MeSH terms: Polygonum/genetics*
  14. Qader SW, Abdulla MA, Chua LS, Sirat HM, Hamdan S
    Int J Mol Sci, 2012;13(2):1481-96.
    PMID: 22408403 DOI: 10.3390/ijms13021481
    The leaves of Polygonum minus were fractionated using an eluting solvent to evaluate the pharmacological mechanisms underlying the anti-ulcerogenic activity of P. minus. Different P. minus fractions were obtained and evaluated for their ulcer preventing capabilities using the ethanol induction method. In this study, Sprague Dawley rats weighing 150-200 g were used. Different parameters were estimated to identify the active fraction underlying the mechanism of the gastroprotective action of P. minus: the gastric mucus barrier, as well as superoxide dismutase, total hexosamine, and prostaglandin synthesis. Amongst the five fractions from the ethanolic extract of P. minus, the ethyl acetate:methanol 1:1 v/v fraction (F2) significantly (p < 0.005) exhibited better inhibition of ulcer lesions in a dose-dependent manner. In addition, rats pre-treated with F2 showed a significant elevation in superoxide dismutase (SOD), hexosamine and PGE2 levels in the stomach wall mucosa in a dose-dependent matter. Based on these results, the ethyl acetate:methanol 1:1 v/v fraction was considered to be the best fraction for mucous protection in the ethanol induction model. The mechanisms underlying this protection were attributed to the synthesis of antioxidants and PGE2.
    Matched MeSH terms: Polygonum/chemistry*
  15. Shahar S, Aziz AF, Ismail SN, Yahya HM, Din NC, Manaf ZA, et al.
    Clin Interv Aging, 2015;10:1505-20.
    PMID: 26445532 DOI: 10.2147/CIA.S86411
    BACKGROUND: Polygonum minus (PM) or locally known in Malaysia, as "kesum" is rich in micronutrients and natural antioxidants. However, its beneficial effect on outcome associates with oxidative stress including cognitive function is yet to be discovered. We assessed the efficacy of PM extract (LineMinus™) on cognitive function and psychosocial status among middle-aged women in Klang Valley of Malaysia.

    METHODS: A randomized, double-blind, placebo-controlled trial among 35 healthy middle-aged women was performed, and subjects were randomized to receive either 250 mg PM or placebo of 100 mg maltodextrin each were taken twice daily for 6 weeks. Subjects were assessed for neuropsychological test, psychosocial status, and anthropometric at baseline, week 3, and week 6. Biomarkers were also determined at baseline and week 6.

    RESULTS: The supplementation of PM showed significant intervention effect on Digit Span test (P<0.05) social functioning domain of 36-Item Short Form Health Survey (P<0.05) among subjects with mood disturbance. While, among subjects with good mood, PM supplementation improved Wechsler Abbreviated Scale of Intelligence (WASI) for IQ verbal (P=0.016) and Full Scale IQ of WASI (P=0.004). There were no adverse effects reported for the supplementation as indicated using biomarkers, including liver function and clinical symptoms.

    CONCLUSION: Supplementation of PM is safe to be consumed for 6 weeks, with potential benefits to attention, short-term memory, improved quality of life, and mood, as well as IQ.

    Matched MeSH terms: Polygonum*
  16. Duangjai A, Parseatsook K, Sajjapong W, Saokaew S
    J Med Food, 2020 Nov;23(11):1169-1175.
    PMID: 32976072 DOI: 10.1089/jmf.2020.4769
    Vietnamese coriander (Polygonum odoratum Lour.) is a plant native to northern Thailand. The biological activities of P. odoratum Lour. extract (POE) include antibacterial, antiviral, and expectorant. However, the effect of POE on intestinal smooth muscle motility is unclear. The aim of this study was to evaluate the relaxant effects of POE on isolated rat ileum. Propranolol (1 μM), calcium chloride (1-20 mM), and Nω-nitro-l-arginine methylester (l-NAME, 100 μM) were used to investigate the mechanisms of action. The results showed that POE (0.01-5 mg/mL) reduced KCl-induced contraction. In addition, POE (1 mg/mL) reduced the contraction by propranolol and l-NAME and attenuated CaCl2-induced contractions. Our results indicate that the relaxation effect of POE on ileum contractions seems to involve nitric oxide and β-adrenergic pathways, and blockade of calcium influx. These findings provide a pharmacological basis for the traditional use of POE to treat gastrointestinal disorders such as irritable bowel syndrome or diarrhea.
    Matched MeSH terms: Polygonum/chemistry*
  17. Christapher PV, Parasuraman S, Asmawi MZ, Murugaiyah V
    Regul Toxicol Pharmacol, 2017 Jun;86:33-41.
    PMID: 28229903 DOI: 10.1016/j.yrtph.2017.02.005
    Medicinal plant preparations may contain high levels of toxic chemical constituents to potentially cause serious harm to animals and/or humans. Thus, toxicity studies are important to assess the toxic effects of plant derived products. Polygonum minus is used traditionally for different ailments in Southeast Asia. This study was conducted to establish the acute and subchronic toxicity profile of the methanol extract of P. minus leaves. The acute toxicity study showed that the methanol extract of P. minus is safe even at the highest dose tested of 2000 mg/kg in female Sprague Dawley rats. There were no behavioural or physiological changes and gross pathological abnormalities observed. The subchronic toxicity study of methanol extract of P. minus at 250, 500, 1000 and 2000 mg/kg were conducted in both sexes of Sprague Dawley rats. There were no changes observed in the extract treated animal's body weight, food and water intake, motor coordination, behaviour and mental alertness. The values of haematological and biochemical parameters were not different between the treated and control animals. The relative organ weights of extract-treated animals did not differ with that of control animals. Based on the present findings, the methanol extract of P. minus leaves could be considered safe up to the dose of 2000 mg/kg.
    Matched MeSH terms: Polygonum/chemistry*
  18. Abdul Rahim N, Nordin N, Ahmad Rasedi NIS, Mohd Kauli FS, Wan Ibrahim WN, Zakaria F
    PMID: 35202824 DOI: 10.1016/j.cbpc.2022.109303
    The World Health Organization (WHO) recorded approximately 350 million people worldwide have suffered from mental health disorders, such as depression, anxiety, schizophrenia, and addictive behaviors. The search for new drugs from nature has drawn on many biological resources and human practices. In this study, leaves of Polygonum minus standardized extract (Biokesum®), 1 and 100 mg/L were used to evaluate the anti-stress effect in the chronic unpredictable stress (CUS) zebrafish model. Five groups of zebrafish were manipulated in this study, comprising control, chronic unpredictable stress (CUS), CUS + Biokesum® 1 mg/L (4 days, 20 min/day, immersion) CUS + Biokesum® 100 mg/L (4 days, 20 min/day, immersion) and CUS + fluoxetine 0.6 mg/L (4 days, 20 min/day, immersion). Four different behavioral tests were used, i.e. open-field test, social interaction test, light and dark test, and exploratory test. After four consecutive days of treatment, the zebrafish were sacrificed for whole-body cortisol analysis. The exploratory test showed a significant change upon P. minus treatment (one-way ANOVA; p = 0.0011). Cortisol analysis showed a decrease of cortisol level after treatment with the extract and fluoxetine, without significant difference. These results showed that zebrafish is a reliable model to study the anti-stress effect of compounds or herbal extract.
    Matched MeSH terms: Polygonum*
  19. Baharum SN, Bunawan H, Ghani MA, Mustapha WA, Noor NM
    Molecules, 2010 Oct 12;15(10):7006-15.
    PMID: 20944520 DOI: 10.3390/molecules15107006
    The essential oil in leaves of Polygonum minus Huds., a local aromatic plant, were identified by a pipeline of gas chromatography (GC) techniques coupled with mass-spectrometry (MS), flame ionization detector (FID) and two dimensional gas chromatography time of flight mass spectrometry (GC x GC-TOF MS). A total of 48 compounds with a good match and high probability values were identified using this technique. Meanwhile, 42 compounds were successfully identified in this study using GC-MS, a significantly larger number than in previous studies. GC-FID was used in determining the retention indices of chemical components in P. minus essential oil. The result also showed the efficiency and reliability were greatly improved when chemometric methods and retention indices were used in identification and quantification of chemical components in plant essential oil.
    Matched MeSH terms: Polygonum/chemistry*
  20. Hassan M, Maarof ND, Ali ZM, Noor NM, Othman R, Mori N
    Biosci Biotechnol Biochem, 2012;76(8):1463-70.
    PMID: 22878188
    NADP(+)-dependent geraniol dehydrogenase (EC 1.1.1.183) is an enzyme that catalyzes the oxidation of geraniol to geranial. Stable, highly active cell-free extract was obtained from Polygonum minus leaves using polyvinylpolypyrrolidone, Amberlite XAD-4, glycerol, 2-mercaptoethanol, thiourea, and phenylmethylsulfonylfluoride in tricine-NaOH buffer (pH 7.5). The enzyme preparation was separated into two activity peaks, geraniol-DH I and II, by DEAE-Toyopearl 650M column chromatography at pH 7.5. Both isoenzymes were purified to homogeneity in three chromatographic steps. The geraniol-DH isoenzymes were similar in molecular mass, optimal temperature, and pH, but the isoelectric point, substrate specificity, and kinetic parameters were different. The K(m) values for geraniol of geraniol-DH I and II appeared to be 0.4 mM and 0.185 mM respectively. P. minus geraniol-DHs are unusual among geraniol-DHs in view of their thermal stability and optimal temperatures, and also their high specificity for allylic alcohols and NADP(+).
    Matched MeSH terms: Polygonum/enzymology*; Polygonum/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links