The toxicities of ROUNDUP and its component chemicals, glyphosate (N-phosphonomethylglycine) and polyoxyethyleneamine (POEA), were determined at 0, 1, 3, 6 and 24 h following administration to rats. The intratracheal administration of glyphosate (0.2 g/kg), POEA (0.1 g/kg), a mixture of glyphosate (0.2 g/kg) + POEA (0.1 g/kg), or ROUNDUP (containing 0.2 g/kg glyphosate and 0.1 g/kg POEA) elicited immediate respiratory effects which were more severe and which lasted longer in the groups receiving the POEA-containing preparations than in the glyphosate alone group. By 1 h, all test preparations had caused deaths, but more occurred from the POEA-containing preparations than from glyphosate. The po administration of POEA (1 g/kg), the mixture of glyphosate (2 g/kg) +POEA (1 g/kg), or ROUNDUP (containing 2 g/kg glyphosate and 1 g/kg POEA) produced diarrhea and blood-stained weeping from noses. Death was only seen from POEA at 24 h. Glyphosate (2 g/kg po) produced transient diarrhea without nose bleeds; POEA caused diarrhea at 1 h; and the mixture of POEA + glyphosate produced diarrhea later that increased in severity with time. Bloody nose secretions were seen only with the preparations that contained POEA. No deaths, respiratory effects or bloody nose secretions occurred in controls given saline. Both POEA and glyphosate caused lung hemorrhages and lung epithelial cell damage with po or intratracheal exposures. These results indicate POEA and preparations that contained POEA were more toxic than glyphosate.
The efficacy of two nanocarriers polyethylene glycol and polyvinyl alcohol magnetic nanoparticles coated with gallic acid (GA) was accomplished via X-ray diffraction, infrared spectroscopy, magnetic measurements, thermal analysis, and TEM. X-ray diffraction and TEM results showed that Fe3O4 nanoparticles were pure iron oxide having spherical shape with the average diameter of 9 nm, compared with 31 nm and 35 nm after coating with polyethylene glycol-GA (FPEGG) and polyvinyl alcohol-GA (FPVAG), respectively. Thermogravimetric analyses proved that after coating the thermal stability was markedly enhanced. Magnetic measurements and Fourier transform infrared (FTIR) revealed that superparamagnetic iron oxide nanoparticles could be successfully coated with two polymers (PEG and PVA) and gallic acid as an active drug. Release behavior of gallic acid from two nanocomposites showed that FPEGG and FPVAG nanocomposites were found to be sustained and governed by pseudo-second-order kinetics. Anticancer activity of the two nanocomposites shows that the FPEGG demonstrated higher anticancer effect on the breast cancer cell lines in almost all concentrations tested compared to FPVAG.
Haloxylon persicum is an endangered western Asiatic desert plant species, which survives under extreme environmental conditions. In this study, we focused on transcriptome analysis of H. persicum to understand the molecular mechanisms associated with drought tolerance. Two different periods of polyethylene glycol (PEG)-induced drought stress (48 h and 72 h) were imposed on H. persicum under in vitro conditions, which resulted in 18 million reads, subsequently assembled by de novo method with more than 8000 transcripts in each treatment. The N50 values were 1437, 1467, and 1524 for the control sample, 48 h samples, and 72 h samples, respectively. The gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis resulted in enrichment of mitogen-activated protein kinase (MAPK) and plant hormone signal transduction pathways under PEG-induced drought conditions. The differential gene expression analysis (DGEs) revealed significant changes in the expression pattern between the control and the treated samples. The KEGG analysis resulted in mapping transcripts with 138 different pathways reported in plants. The differential expression of drought-responsive transcription factors depicts the possible signaling cascades involved in drought tolerance. The present study provides greater insight into the fundamental transcriptome reprogramming of desert plants under drought.