Displaying publications 1 - 20 of 236 in total

Abstract:
Sort:
  1. Wan Zakaria WNA, Aizat WM, Goh HH, Mohd Noor N
    J Plant Res, 2019 Sep;132(5):681-694.
    PMID: 31422552 DOI: 10.1007/s10265-019-01130-w
    Carnivorous plants capture and digest insects for nutrients, allowing them to survive in soil deprived of nitrogenous nutrients. Plants from the genus Nepenthes produce unique pitchers containing secretory glands, which secrete enzymes into the digestive fluid. We performed RNA-seq analysis on the pitcher tissues and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis on the pitcher fluids of Nepenthes × ventrata to study protein expression in this carnivory organ during early days of pitcher opening. This transcriptome provides a sequence database for pitcher fluid protein identification. A total of 32 proteins of diverse functions were successfully identified in which 19 proteins can be quantified based on label-free quantitative proteomics (SWATH-MS) analysis while 16 proteins were not reported previously. Our findings show that certain proteins in the pitcher fluid were continuously secreted or replenished after pitcher opening, even without any prey or chitin induction. We also discovered a new aspartic proteinase, Nep6, secreted into pitcher fluid. This is the first SWATH-MS analysis of protein expression in Nepenthes pitcher fluid using a species-specific reference transcriptome. Taken together, our study using a gel-free shotgun proteomics informed by transcriptomics (PIT) approach showed the dynamics of endogenous protein secretion in the digestive organ of N. × ventrata and provides insights on protein regulation during early pitcher opening prior to prey capture.
    Matched MeSH terms: Plant Proteins/genetics*; Plant Proteins/metabolism; Plant Proteins/chemistry
  2. Abd Rahim FN, Wan Ibadullah WZ, Saari N, Brishti FH, Mustapha NA, Ahmad N, et al.
    Int J Biol Macromol, 2023 Jul 01;242(Pt 3):124908.
    PMID: 37217045 DOI: 10.1016/j.ijbiomac.2023.124908
    Rice bran protein concentrates (RBPC) were extracted using mild alkaline solvents (pH: 8, 9, 10). The physicochemical, thermal, functional, and structural aspects of freeze-drying (FD) and spray-drying (SD) were compared. FD and SD of RBPC had porous and grooved surfaces, with FD having non-collapsed plates and SD being spherical. Alkaline extraction increases FD's protein concentration and browning, whereas SD inhibits browning. According to amino acid profiling, RBPC-FD9's extraction optimizes and preserves amino acids. A tremendous particle size difference was prominent in FD, thermally stable at a minimal maximum of 92 °C. Increased pH extraction gives FD greater exposal surface hydrophobicity and positively relates to denaturation enthalpy. Mild pH extraction and drying significantly impacted solubility, improved emulsion properties, and foaming properties of RBPC as observed in acidic, neutral, and alkaline environments. RBPC-FD9 and RBPC-SD10 extracts exhibit outstanding foaming and emulsion activity in all pH conditions, respectively. Appropriate drying selection, RBPC-FD or SD potentially employed as foaming/emulsifier agent or meat analog.
    Matched MeSH terms: Plant Proteins/chemistry
  3. Alrosan M, Tan TC, Koh WY, Easa AM, Gammoh S, Alu'datt MH
    Crit Rev Food Sci Nutr, 2023;63(25):7677-7691.
    PMID: 35266840 DOI: 10.1080/10408398.2022.2049200
    Demands for high nutritional value-added food products and plant-based proteins have increased over the last decade, in line with the growth of the human population and consumer health awareness. The quality of the plant-based proteins depends on their digestibility, amino acid content, and residues of non-nutritive compounds, such as phenolic compounds, anti-nutritional compounds, antioxidants, and saponins. The presence of these non-nutritive compounds could have detrimental effects on the quality of the proteins. One of the solutions to address these shortcomings of plant-based proteins is fermentation, whereby enzymes that present naturally in microorganisms used during fermentation are responsible for the cleavage of the bonds between proteins and non-nutritive compounds. This mechanism has pronounced effects on the non-nutritive compounds, resulting in the enhancement of protein digestibility and functional properties of plant-based proteins. We assert that the types of plant-based proteins and microorganisms used during fermentation must be carefully addressed to truly enhance the quality, functional properties, and health functionalities of plant-based proteins.Supplemental data for this article is available online at here. show.
    Matched MeSH terms: Plant Proteins*
  4. Hew CS, Gam LH
    Appl Biochem Biotechnol, 2011 Dec;165(7-8):1577-86.
    PMID: 21938418 DOI: 10.1007/s12010-011-9377-x
    Gynura procumbens (Lour.) Merr. is a traditionally used medicinal plant to decrease cholesterol level, reduce high blood pressure, control diabetics, and for treatment of cancer. In our present study, a proteomic approach was applied to study the proteome of the plant that had never analyzed before. We have identified 92 abundantly expressed proteins from the leaves of G. procumbens (Lour.) Merr. Amongst the identified proteins was miraculin, a taste-masking agent with high commercial value. Miraculin made up ∼0.1% of the total protein extracted; the finding of miraculin gave a great commercial value to G. procumbens (Lour.) Merr. as miraculin's natural source is limited while the production of recombinant miraculin faced challenges of not being able to exhibit the taste-masking effect as in the natural miraculin. We believe the discovery of miraculin in G. procumbens (Lour.) Merr., provides commercial feasibility of miraculin in view of the availability of G. procumbens (Lour.) Merr. that grow wildly and easily in tropical climate.
    Matched MeSH terms: Plant Proteins/genetics; Plant Proteins/isolation & purification; Plant Proteins/metabolism; Plant Proteins/chemistry*
  5. Tan ES, Ying-Yuan N, Gan CY
    Food Chem, 2014;152:447-55.
    PMID: 24444960 DOI: 10.1016/j.foodchem.2013.12.008
    Optimisation of protein extraction yield from pinto bean was investigated using response surface methodology. The maximum protein yield of 54.8 mg/g was obtained with the optimal conditions of: temperature=25 °C, time=1 h and buffer-to-sample ratio=20 ml/g. PBPI was found to obtain high amount of essential amino acids such as leucine, lysine, and phenylalanine compared to SPI. The predominant proteins of PBPI were vicilin and phytohemagglutinins whereas the predominant proteins of SPI were glycinin and conglycinins. Significantly higher emulsifying capacity was found in PBPI (84.8%) compared to SPI (61.9%). Different isoelectric points were found in both PBPI (4.0-5.5) and SPI (4.0-5.0). Also, it was found that PBPI obtained a much higher denaturation temperature of 110.2 °C compared to SPI (92.5 °C). Other properties such as structural information, gelling capacity, water- and oil-holding capacities, emulsion stability as well as digestibility were also reported.
    Matched MeSH terms: Plant Proteins/isolation & purification; Plant Proteins/chemistry*
  6. Le VT, Sarpan N, Huynh K, Ooi SE, Napis S, Ho CL, et al.
    Mol Biotechnol, 2011 Jun;48(2):156-64.
    PMID: 21153717 DOI: 10.1007/s12033-010-9356-4
    In this study, we report the molecular characterization of clone Eg707 isolated from cell suspension culture of the oil palm. The deduced polypeptide of clone Eg707 is highly similar to an unknown protein from Arabidopsis thaliana. The presence of an Ald-Xan-dh-C2 superfamily domain in the deduced protein sequence suggested that Eg707 protein might be involved in abscisic acid biosynthesis. Eg707 might be present as a single copy gene in the oil palm genome. This gene is highly expressed in tissue cultured materials compared to vegetative and reproductive tissues, suggesting a role of this gene during oil palm somatic embryogenesis or at the early stages of embryo development. Expression analysis of Eg707 by RNA in situ hybridization showed that Eg707 transcripts were present throughout somatic embryo development starting from proembryo formation at the embryogenic callus stages till the maturing embryo stages. Since proembryo formation within the embryogenic callus is one of the first key factors in oil palm somatic embryo development, it is suggested that Eg707 could be used as a reliable molecular marker for detecting early stage of oil palm somatic embryogenesis.
    Matched MeSH terms: Plant Proteins/genetics; Plant Proteins/metabolism
  7. Yip E, Cacioli P
    J Allergy Clin Immunol, 2002 Aug;110(2 Suppl):S3-14.
    PMID: 12170237 DOI: 10.1067/mai.2002.124499
    Gloves that will provide a barrier of protection from infectious organisms are an essential feature of medical practice for the protection of both patients and medical personnel. Natural rubber latex has consistently been the most satisfactory raw material for the manufacture of gloves. Certain latex proteins, carried over into the finished product by inadequate manufacturing processes, may pose a risk of provoking allergic reactions in some patients and medical workers. As with any allergy, the risk depends on the route of exposure and dose. Hence, the method of manufacture, including the means used to coat gloves to make donning easy, can influence the eventual exposure of sensitive people to latex allergens. In this article, we describe the several processes in use and their effects on latex protein content.
    Matched MeSH terms: Plant Proteins/immunology; Plant Proteins/isolation & purification
  8. Lau BYC, Othman A, Ramli US
    Protein J, 2018 12;37(6):473-499.
    PMID: 30367348 DOI: 10.1007/s10930-018-9802-x
    Proteomics technologies were first applied in the oil palm research back in 2008. Since proteins are the gene products that are directly correspond to phenotypic traits, proteomic tools hold a strong advantage above other molecular tools to comprehend the biological and molecular mechanisms in the oil palm system. These emerging technologies have been used as non-overlapping tools to link genome-wide transcriptomics and metabolomics-based studies to enhance the oil palm yield and quality through sustainable plant breeding. Many efforts have also been made using the proteomics technologies to address the oil palm's Ganoderma disease; the cause and management. At present, the high-throughput screening technologies are being applied to identify potential biomarkers involved in metabolism and cellular development through determination of protein expression changes that correlate with oil production and disease. This review highlights key elements in proteomics pipeline, challenges and some examples of their implementations in plant studies in the context of oil palm in particular. We foresee that the proteomics technologies will play more significant role to address diverse issues related to the oil palm in the effort to improve the oil crop.
    Matched MeSH terms: Plant Proteins/genetics; Plant Proteins/metabolism*
  9. Lau BYC, Othman A
    PLoS One, 2019;14(8):e0221052.
    PMID: 31415606 DOI: 10.1371/journal.pone.0221052
    Protein solubility is a critical prerequisite to any proteomics analysis. Combination of urea/thiourea and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) have been routinely used to enhance protein solubilization for oil palm proteomics studies in recent years. The goals of these proteomics analysis are essentially to complement the knowledge regarding the regulation networks and mechanisms of the oil palm fatty acid biosynthesis. Through omics integration, the information is able to build a regulatory model to support efforts in improving the economic value and sustainability of palm oil in the global oil and vegetable market. Our study evaluated the utilization of sodium deoxycholate as an alternative solubilization buffer/additive to urea/thiourea and CHAPS. Efficiency of urea/thiourea/CHAPS, urea/CHAPS, urea/sodium deoxycholate and sodium deoxycholate buffers in solubilizing the oil palm (Elaeis guineensis var. Tenera) mesocarp proteins were compared. Based on the protein yields and electrophoretic profile, combination of urea/thiourea/CHAPS were shown to remain a better solubilization buffer and additive, but the differences with sodium deoxycholate buffer was insignificant. A deeper mass spectrometric and statistical analyses on the identified proteins and peptides from all the evaluated solubilization buffers revealed that sodium deoxycholate had increased the number of identified proteins from oil palm mesocarps, enriched their gene ontologies and reduced the number of carbamylated lysine residues by more than 67.0%, compared to urea/thiourea/CHAPS buffer. Although only 62.0% of the total identified proteins were shared between the urea/thiourea/CHAPS and sodium deoxycholate buffers, the importance of the remaining 38.0% proteins depends on the applications. The only observed limitations to the application of sodium deoxycholate in protein solubilization were the interference with protein quantitation and but it could be easily rectified through a 4-fold dilution. All the proteomics data are available via ProteomeXchange with identifier PXD013255. In conclusion, sodium deoxycholate is applicable in the solubilization of proteins extracted from oil palm mesocarps with higher efficiency compared to urea/thiourea/CHAPS buffer. The sodium deoxycholate buffer is more favorable for proteomics analysis due to its proven advantages over urea/thiourea/CHAPS buffer.
    Matched MeSH terms: Plant Proteins/analysis*; Plant Proteins/chemistry
  10. Hossain Brishti F, Chay SY, Muhammad K, Rashedi Ismail-Fitry M, Zarei M, Karthikeyan S, et al.
    Food Chem, 2021 May 15;344:128643.
    PMID: 33246681 DOI: 10.1016/j.foodchem.2020.128643
    Mung bean protein isolate was texturized at different feed moisture contents (30.0, 49.3, and 60.0%) at a constant temperature (144.57 °C) to evaluate the changes in protein profile, solubility, thermal, structural (at secondary and tertiary levels) and rheological properties. SDS-PAGE, surface hydrophobicity, circular dichroism, FTIR spectroscopy, and fluorescence analyses revealed protein unfolding, aggregation, and structural rearrangement as a function of feed moisture content. Extrusion at 49.3% feed moisture produced texturized mung bean protein (TMBP) with favourable partial denaturation, the formation of small aggregates, improved solubility, and digestibility with strong gel forming behaviour, whereas 30.0 and 60.0% moisture content resulted in complete protein denaturation, the undesirable formation of large aggregates and weak gels. In conclusion, protein denaturation and formation of aggregates can be controlled by manipulating feed moisture content during extrusion, with 49.3% feed moisture prompting favourable partial denaturation to produce TMBP with desirable qualities for use as a vegetarian-based meat extender.
    Matched MeSH terms: Plant Proteins/isolation & purification*; Plant Proteins/chemistry*
  11. Jamil NAM, Rahmad N, Rosli NHM, Al-Obaidi JR
    Electrophoresis, 2018 12;39(23):2954-2964.
    PMID: 30074628 DOI: 10.1002/elps.201800185
    Wax apple is one of the underutilized fruits that is considered a good source of fibers, vitamins, minerals as well as antioxidants. In this study, a comparative analysis of the developments of wax fruit ripening at the proteomic and metabolomic level was reported. 2D electrophoresis coupled with MALDI-TOF/TOF was used to compare the proteome profile from three developmental stages named immature, young, and mature fruits. In general, the protein expression profile and the identified proteins function were discussed for their potential roles in fruit physiological development and ripening processes. The metabolomic investigation was also performed on the same samples using quadrupole LC-MS (LC-QTOF/MS). Roles of some of the differentially expressed proteins and metabolites are discussed in relation to wax apple ripening during the development. This is the first study investigating the changes in the proteins and metabolites in wax apple at different developmental stages. The information obtained from this research will be helpful in developing biomarkers for breeders and help the plant researchers to avoid wax apple cultivation problems such as fruit cracking.
    Matched MeSH terms: Plant Proteins/analysis; Plant Proteins/metabolism
  12. Patil RV, Hadawale KN, Ramli ANM, Wadkar SS, Bhuyar P
    Mol Biotechnol, 2023 Jun;65(6):833-848.
    PMID: 36544065 DOI: 10.1007/s12033-022-00633-7
    In plant development, flowering is the most widely studied process. Floral forms show large diversity in different species due to simple variations in basic architecture. To determine the floral gene expression during the past decade, MADS-box genes have identified as key regulators in both reproductive and vegetative plant development. Traditional genetics and functional genomics tools are now available to elucidate the expression and function of this complex gene family on a much larger scale. Moreover, comparative analysis of the MADS-box genes in diverse flowering and non-flowering plants, boosted by various molecular technologies such as ChIP and next-generation DNA sequencing, contributes to our understanding of how this important gene family has expanded during the evolution of land plants. Likewise, the big data analysis revealed combined activity of transcriptional regulators and floral organ identity factors regulate the flower developmental programs. Thus, with the help of cutting-edge technologies like RNA-Sequencing, sex determination is now better understood in few non-model plants Therefore, the recent advances in next-generation sequencing (NGS) should enable researchers to identify the full range of floral gene functions, which will significantly help to understand plant development and evolution. This review summarizes the floral homeotic genes in model and non-model species to understand the flower development genes and dioecy evolution.
    Matched MeSH terms: Plant Proteins/genetics; Plant Proteins/metabolism
  13. Khairul-Anuar MA, Mazumdar P, Othman RY, Harikrishna JA
    Ann Bot, 2022 Sep 26;130(4):579-594.
    PMID: 35980362 DOI: 10.1093/aob/mcac103
    BACKGROUND: Flower pigment and shape are determined by the coordinated expression of a set of structural genes during flower development. R2R3-MYB transcription factors are known regulators of structural gene expression. The current study focused on two members of this large family of transcription factors that were predicted to have roles in pigment biosynthesis and organ shape development in orchids.

    METHODS: Phylogenetic analysis was used to identify candidate Dendrobium catenatum R2R3-MYB (DcaMYB) sequences associated with pigment and cell shape development. Gene silencing of candidate DhMYBs in Dendrobium hybrid by direct application of dsRNA to developing flowers was followed by observation of gene expression level and flower phenotypes. Silencing of the structural gene chalcone synthase was used as a comparative control.

    KEY RESULTS: Ten candidate flower-associated DcaMYBs were identified. Flowers treated with dsRNA of DhMYB22 and DhMYB60 sequences were less pigmented and had relatively low expression of anthocyanin biosynthetic genes (F3'H and DFR), lower total anthocyanin concentration and markedly lower levels of cyanidin-3-glucoside and cyanidin-3-rutinoside. Petals of DhMYB22-treated flowers and sepals of DhMYB60-treated flowers showed the greatest colour difference relative to the same organs in untreated flowers. DhMYB22-treated flowers had relatively narrow and constricted lips, while DhMYB60-treated flowers had narrow and constricted sepals. No significant difference in shape was observed for DhCHS-treated or untreated flowers.

    CONCLUSIONS: Our results demonstrate that DhMYB22 and DhMYB60 regulate pigment intensity and floral organ shape in Dendrobium. This is a first report of MYB regulation of floral organ shape in orchids.

    Matched MeSH terms: Plant Proteins/genetics; Plant Proteins/metabolism
  14. Goh HH, Sloan J, Malinowski R, Fleming A
    J Plant Physiol, 2014 Feb 15;171(3-4):329-39.
    PMID: 24144490 DOI: 10.1016/j.jplph.2013.09.009
    Expansins have long been implicated in the control of cell wall extensibility. However, despite ample evidence supporting a role for these proteins in the endogenous mechanism of plant growth, there are also examples in the literature where the outcome of altered expansin gene expression is difficult to reconcile with a simplistic causal linkage to growth promotion. To investigate this problem, we report on the analysis of transgenic Arabidopsis plants in which a heterologous cucumber expansin can be inducibly overexpressed. Our results indicate that the effects of expansin expression on growth depend on the degree of induction of expansin expression and the developmental pattern of organ growth. They support the role of expansin in directional cell expansion. They are also consistent with the idea that excess expansin might itself impede normal activities of cell wall modifications, culminating in both growth promotion and repression depending on the degree of expression.
    Matched MeSH terms: Plant Proteins/genetics; Plant Proteins/metabolism
  15. Alhusayni S, Roswanjaya YP, Rutten L, Huisman R, Bertram S, Sharma T, et al.
    BMC Plant Biol, 2023 Nov 24;23(1):587.
    PMID: 37996841 DOI: 10.1186/s12870-023-04594-0
    BACKGROUND: Nitrogen-fixing nodules occur in ten related taxonomic lineages interspersed with lineages of non-nodulating plant species. Nodules result from an endosymbiosis between plants and diazotrophic bacteria; rhizobia in the case of legumes and Parasponia and Frankia in the case of actinorhizal species. Nodulating plants share a conserved set of symbiosis genes, whereas related non-nodulating sister species show pseudogenization of several key nodulation-specific genes. Signalling and cellular mechanisms critical for nodulation have been co-opted from the more ancient plant-fungal arbuscular endomycorrhizal symbiosis. Studies in legumes and actinorhizal plants uncovered a key component in symbiotic signalling, the LRR-type SYMBIOSIS RECEPTOR KINASE (SYMRK). SYMRK is essential for nodulation and arbuscular endomycorrhizal symbiosis. To our surprise, however, despite its arbuscular endomycorrhizal symbiosis capacities, we observed a seemingly critical mutation in a donor splice site in the SYMRK gene of Trema orientalis, the non-nodulating sister species of Parasponia. This led us to investigate the symbiotic functioning of SYMRK in the Trema-Parasponia lineage and to address the question of to what extent a single nucleotide polymorphism in a donor splice site affects the symbiotic functioning of SYMRK.

    RESULTS: We show that SYMRK is essential for nodulation and endomycorrhization in Parasponia andersonii. Subsequently, it is revealed that the 5'-intron donor splice site of SYMRK intron 12 is variable and, in most dicotyledon species, doesn't contain the canonical dinucleotide 'GT' signature but the much less common motif 'GC'. Strikingly, in T. orientalis, this motif is converted into a rare non-canonical 5'-intron donor splice site 'GA'. This SYMRK allele, however, is fully functional and spreads in the T. orientalis population of Malaysian Borneo. A further investigation into the occurrence of the non-canonical GA-AG splice sites confirmed that these are extremely rare.

    CONCLUSION: SYMRK functioning is highly conserved in legumes, actinorhizal plants, and Parasponia. The gene possesses a non-common 5'-intron GC donor splice site in intron 12, which is converted into a GA in T. orientalis accessions of Malaysian Borneo. The discovery of this functional GA-AG splice site in SYMRK highlights a gap in our understanding of splice donor sites.

    Matched MeSH terms: Plant Proteins/genetics; Plant Proteins/metabolism
  16. Evans KV, Ransom E, Nayakoti S, Wilding B, Mohd Salleh F, Gržina I, et al.
    Sci Rep, 2024 Apr 02;14(1):7756.
    PMID: 38565965 DOI: 10.1038/s41598-024-58161-0
    SAG21/LEA5 is an unusual late embryogenesis abundant protein in Arabidopsis thaliana, that is primarily mitochondrially located and may be important in regulating translation in both chloroplasts and mitochondria. SAG21 expression is regulated by a plethora of abiotic and biotic stresses and plant growth regulators indicating a complex regulatory network. To identify key transcription factors regulating SAG21 expression, yeast-1-hybrid screens were used to identify transcription factors that bind the 1685 bp upstream of the SAG21 translational start site. Thirty-three transcription factors from nine different families bound to the SAG21 promoter, including members of the ERF, WRKY and NAC families. Key binding sites for both NAC and WRKY transcription factors were tested through site directed mutagenesis indicating the presence of cryptic binding sites for both these transcription factor families. Co-expression in protoplasts confirmed the activation of SAG21 by WRKY63/ABO3, and SAG21 upregulation elicited by oligogalacturonide elicitors was partially dependent on WRKY63, indicating its role in SAG21 pathogen responses. SAG21 upregulation by ethylene was abolished in the erf1 mutant, while wound-induced SAG21 expression was abolished in anac71 mutants, indicating SAG21 expression can be regulated by several distinct transcription factors depending on the stress condition.
    Matched MeSH terms: Plant Proteins/genetics; Plant Proteins/metabolism
  17. Ru X, You W, Zhang J, Xu F, Wu Z, Jin P, et al.
    Food Chem, 2024 Nov 30;459:140420.
    PMID: 39024869 DOI: 10.1016/j.foodchem.2024.140420
    The effects of γ-aminobutyric (GABA) on enzymatic browning, storage quality, membrane and reactive oxygen species (ROS) metabolism in fresh-cut stem lettuce were investigated. The results illustrated that GABA treatment delayed browning degree, polyphenol oxidase (PPO) activity and the expression of LsPPO. Meanwhile, higher chlorophyll and ascorbic acid contents were exhibited in GABA-treated stem lettuce, as well as the slower microbial propagation. Further investigation revealed that exogenous GABA application declined malondialdehyde content, electrolyte leakage and the enzyme activities of membrane metabolism, and the expression levels of related genes were also downregulated. In addition, GABA treatment scavenged ROS and strengthened the enzyme activities of ROS metabolism, as well as the expression levels of corresponding genes. Taken together, these findings implied that the repressed enzymatic browning and microbial propagation in GABA-treated stem lettuce were due to the inhibition of ROS accumulation, enhancement of membrane stability and increased resistance to oxidation.
    Matched MeSH terms: Plant Proteins/genetics; Plant Proteins/metabolism
  18. Chakraborty S, Salekdeh GH, Yang P, Woo SH, Chin CF, Gehring C, et al.
    J Proteome Res, 2015 Jul 2;14(7):2723-44.
    PMID: 26035454 DOI: 10.1021/acs.jproteome.5b00211
    In the rapidly growing economies of Asia and Oceania, food security has become a primary concern. With the rising population, growing more food at affordable prices is becoming even more important. In addition, the predicted climate change will lead to drastic changes in global surface temperature and changes in rainfall patterns that in turn will pose a serious threat to plant vegetation worldwide. As a result, understanding how plants will survive in a changing climate will be increasingly important. Such challenges require integrated approaches to increase agricultural production and cope with environmental threats. Proteomics can play a role in unraveling the underlying mechanisms for food production to address the growing demand for food. In this review, the current status of food crop proteomics is discussed, especially in regard to the Asia and Oceania regions. Furthermore, the future perspective in relation to proteomic techniques for the important food crops is highlighted.
    Matched MeSH terms: Plant Proteins/metabolism*
  19. Chai TT, Ee KY, Kumar DT, Manan FA, Wong FC
    Protein Pept Lett, 2021;28(6):623-642.
    PMID: 33319654 DOI: 10.2174/0929866527999201211195936
    Large numbers of bioactive peptides with potential applications in protecting against human diseases have been identified from plant sources. In this review, we summarized recent progress in the research of plant-derived bioactive peptides, encompassing their production, biological effects, and mechanisms. This review focuses on antioxidant, antimicrobial, antidiabetic, and anticancer peptides, giving special attention to evidence derived from cellular and animal models. Studies investigating peptides with known sequences and well-characterized peptidic fractions or protein hydrolysates will be discussed. The use of molecular docking tools to elucidate inter-molecular interactions between bioactive peptides and target proteins is highlighted. In conclusion, the accumulating evidence from in silico, in vitro and in vivo studies to date supports the envisioned applications of plant peptides as natural antioxidants as well as health-promoting agents. Notwithstanding, much work is still required before the envisioned applications of plant peptides can be realized. To this end, future researches for addressing current gaps were proposed.
    Matched MeSH terms: Plant Proteins*
  20. Kandasamy G, Shaleh SRM
    Appl Biochem Biotechnol, 2017 Jun;182(2):586-597.
    PMID: 27957653 DOI: 10.1007/s12010-016-2346-7
    Harvesting microalgae from medium is a major challenge due to their small size and low concentrations. In an attempt to find a cost-effective and eco-friendly harvesting technique, mung bean (Vigna radiata) protein extract (MBPE) was used for flocculation of Nannochloropsis sp. The effects of parameters such as pH, flocculant dose, algae concentration, and mixing time were used to study the flocculation efficiency (FE) of MBPE. Optimum parameters of MBPE dosage of 20 mL L(-1) and a mixing rate of 300 rpm for 6 min achieved a FE of >92% after 2 h of settling time. MBPE-aggregated microlga flocs were characterized by microscopy. Zeta potential values decreased with increasing flocculant dose, and the values obtained were -6.93 ± 0.60, -5.36 ± 0.64, and -4.44 ± 0.22 for doses of 10, 20, and 30 mL L(-1), respectively. In conclusion, MBPE flocculants used in this study are safe, nontoxic, and pollution free, so they could be used for an effective, convenient, and rapid harvesting of microalgae in an eco-friendly approach. These methods are sustainable and could be applied in industrial scale for aquaculture nutrition.
    Matched MeSH terms: Plant Proteins/chemistry*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links