Displaying all 2 publications

Abstract:
Sort:
  1. Ng KH, Tan KL, Gan SK, Looi LM
    Malays J Pathol, 1992 Jun;14(1):29-33.
    PMID: 1469915
    The use of the colloidal-gold technique in electron microscopy immunocytochemistry has provided important information on the in situ localisation of intracellular antigens. We have developed a post-embedding technique for prolactin localisation on resin-embedded human pituitary tissue sections by the use of the protein-A gold conjugate. Human pituitary tissue obtained at autopsy was processed for electron microscopical study without post-osmication and then embedded in Epon. The indirect immunoperoxidase method was used for light microscopical targetting of lactotroph cells for subsequent electron microscopical antigen localisation. Ultra-thin sections were labelled with human anti-human prolactin followed by protein-A gold conjugate. Specific labelling was observed over secretory granules with a density of 15-30 particles per granule, as determined by the Quantimet 570 image analysis system. This technique provides a means of studying the pathophysiology of hormonal secretion at ultrastructural level and can be a useful tool in diagnostic and research investigations.
    Matched MeSH terms: Pituitary Gland/chemistry*
  2. Ogawa S, Sivalingam M, Biran J, Golan M, Anthonysamy RS, Levavi-Sivan B, et al.
    J. Comp. Neurol., 2016 10 01;524(14):2753-75.
    PMID: 26917324 DOI: 10.1002/cne.23990
    In vertebrates, gonadotropin-releasing hormone (GnRH) and gonadotropin-inhibitory hormone (GnIH), respectively, regulate reproduction in positive and negative manners. GnIH belongs to the LPXRFa family of peptides previously identified in mammalian and nonmammalian vertebrates. Studying the detailed distribution of LPXRFa as well as its receptor (LPXRFa-R) in the brain and pituitary is important for understanding their multiple action sites and potential functions. However, the distribution of LPXRFa and LPXRFa-R has not been studied in teleost species, partially because of the lack of fish-specific antibodies. Therefore, in the present study, we generated specific antibodies against LPXRFa and its receptor from Nile tilapia (Oreochromis niloticus), and examined their distributions in the brain and pituitary by immunohistochemistry. Tilapia LPXRFa-immunoreactive neurons lie in the posterior ventricular nucleus of the caudal preoptic area, whereas LPXRFa-R-immunoreactive cells are distributed widely. Double immunofluorescence showed that neither LPXRFa-immunoreactive fibers nor LPXRFa-R is closely associated or coexpressed with GnRH1, GnRH3, or kisspeptin (Kiss2) neurons. In the pituitary, LPXRFa fibers are closely associated with gonadotropic endocrine cells [expressing luteinizing hormone (LH) and follicle-stimulating hormone (FSH)], with adrenocorticomelanotropic cells [corticotropin (ACTH) and α-melanotropin (α-MSH)], and with somatolactin endocrine cells. In contrast, LPXRFa-R are expressed only in LH, ACTH, and α-MSH cells. These results suggest that LPXRFa and LPXRFa-R signaling acts directly on the pituitary cells independent from GnRH or kisspeptin and could play multiple roles in reproductive and nonreproductive functions in teleosts. J. Comp. Neurol. 524:2753-2775, 2016. © 2016 Wiley Periodicals, Inc.
    Matched MeSH terms: Pituitary Gland/chemistry*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links