A study of nerve regeneration through a 1cm defect in the peroneal component of the sciatic nerve was performed on sixteen rabbits. Either silicone or polytetrafluoroethylene (PTFE) tubes or nerve graft were used to bridge the defect and the opposite limb was not operated upon. The rabbits that underwent nerve grafting had favourable findings. In the PTFE group, a nerve-like structure was seen at the former gap site and histology confirmed viable axons within the tubes and distal to the repair site. In the silicone tube group, there were no myelinated axons demonstrated. The axonal count for the grafted nerves and the nerves repaired with PTFE tube are on average 80.4% and 38.2% of that of the unoperated nerve, respectively. On average, the percentage anterior compartment muscle weight (expressed as a percentage of the unoperated limb) for the silicone, PTFE and nerve graft groups are 42.3%, 42.1%, and 72.7% respectively. The results show that although, PTFE conduits can bridge a nerve defect of 1cm, nerve grafting provides a superior and more predictable outcome.
Despite the availability of various clinical trials that used different diagnostic methods to identify diabetic sensorimotor polyneuropathy (DSPN), no reliable studies that prove the associations among diagnostic parameters from two different methods are available. Statistically significant diagnostic parameters from various methods can help determine if two different methods can be incorporated together for diagnosing DSPN. In this study, a systematic review, meta-analysis, and trial sequential analysis (TSA) were performed to determine the associations among the different parameters from the most commonly used electrophysiological screening methods in clinical research for DSPN, namely, nerve conduction study (NCS), corneal confocal microscopy (CCM), and electromyography (EMG), for different experimental groups. Electronic databases (e.g., Web of Science, PubMed, and Google Scholar) were searched systematically for articles reporting different screening tools for diabetic peripheral neuropathy. A total of 22 studies involving 2394 participants (801 patients with DSPN, 702 controls, and 891 non-DSPN patients) were reviewed systematically. Meta-analysis was performed to determine statistical significance of difference among four NCS parameters, i.e., peroneal motor nerve conduction velocity, peroneal motor nerve amplitude, sural sensory nerve conduction velocity, and sural sensory nerve amplitude (all p
BACKGROUND: The role of endothelial injury and circulating adhesion molecule in the development and progression of diabetic peripheral neuropathy in the long-term has been established previously.
AIMS: To study the effects of short-term glycemic control using insulin and oral hypoglycemic agent therapy (OHA) on the peroneal nerve function and vascular cell adhesion molecule-1 (VCAM-1) and advanced glycation endproducts (AGE) levels in type 2 diabetic patients.
SETTINGS AND DESIGN: A randomized controlled study involving poorly controlled (HbA1c, 7.5%-11%) type 2 diabetic patients attending the endocrinology outpatient center in a tertiary hospital in Kuala Lumpur.
MATERIALS AND METHODS: Twenty-nine patients were randomized to receive insulin (n=15) or OHA (n=14) for 8 weeks. The glycemic variables (HbA1c, fasting plasma glucose [FPG], fructosamine), VCAM-1, serum AGE and the peroneal motor conduction velocity (PMCV) were measured at baseline and at 4-week intervals.
STATISTICAL ANALYSIS USED: Paired 't' test or Kruskal Wallis test; and the unpaired 't' test or Mann-Whitney U test were used for within-group and between-group analyses, respectively. Correlation was analyzed using Spearman's correlation coefficient.
RESULTS: Within-group analysis showed significant progressive improvement in HbA1c at weeks 4 and 8 in the insulin group. The PMCV improved significantly in both groups by week 8, and by week 4 (P = 0.01) in the insulin group. PMCV correlated negatively with VCAM-1 (P = 0.031) and AGE (P = 0.009) at week 8.
CONCLUSION: Aggressive glycemic control with insulin improves the peroneal nerve function within 4 weeks. Improvement in the serum VCAM-1 and AGE levels correlated significantly with improvement in peroneal nerve conduction velocity only in the insulin group.
Study site: Tertiary endocrinology outpatient center in Kuala Lumpur, Malaysia