Materials and Methods: A total of 111 subjects who fulfilled the inclusion and exclusion criteria were randomly included in the study. The subjects were recalled after 1 month of the commencement of fixed orthodontic treatment for the recording of baseline data including plaque index (PI), gingival index (GI), and modified papillary bleeding index (MPBI). After recording of the baseline data, the subjects were randomly allocated into each of the intervention groups, i.e., group A (manual tooth brush), group B (powered tooth brush), and group C (manual tooth brush combined with mouthwash) by lottery method. Further, all the subjects were recalled after 1 and 2 months for recording the data.
Results: Regarding plaque levels, it was seen that there was a highly statistically significant difference between the three groups (P = 0.001), with the manual tooth brush combined with chlorhexidine mouthwash group recording the lowest mean PI score of 0.5 ± 0.39. A comparison of the mean GI scores among the groups at the end of 2 months shows a highly statistically significant difference (P = 0.001). The mean MPBI scores at the end of 2 months were highly statistically significant among the three groups (P = 0.001), with the group C recording the lowest mean MPBI score of 0.3 ± 0.3.
Conclusion: The powered tooth brush group subjects exhibited significantly lesser PI, GI, and MPBI scores than the manual tooth brush group at the end of 2 months, whereas the manual tooth brush combined with chlorhexidine mouth wash group subjects showed maximum improvement, having significantly lesser PI and GI scores than the powered tooth brush group.
MATERIALS AND METHODS: Subgingival plaque samples were collected with sterile curette and subjected to deoxyribonucleic acid (DNA) extraction and subsequent PCR for detection of P. gingivalis.
RESULTS: Porphyromonas gingivalis was detected in 60% of patients of group II (pocket depth up to 5 mm), and in 93.33% of patients of group III (pocket depth more than 5 mm). One periodontally healthy subject in group I (probing depth < 3 mm) showed the presence of P. gingivalis.
CONCLUSION: Detection frequency of bacterium increased significantly with increase in probing pocket depth (PPD), loss of attachment (LOA), and gingival index (GI).
CLINICAL SIGNIFICANCE: Porphyromonas gingivalis is strongly associated with chronic periodontitis and its detection frequency positively correlates with the severity of periodontal destruction.
METHODS: A total of 144 participants were recruited (48 cigarette smokers, 48 e-cigarette smokers, and 48 never-smokers). Clinical periodontal parameters, including plaque index (PI), gingival index (GI), periodontal probing pocket depth (PPD), and clinical attachment loss (CAL) were recorded, excluding third molars. The level of unstimulated whole salivary pH was measured using a portable pH meter and the levels of salivary cotinine were measured using Enzyme-Linked Immunosorbent Assay (ELISA).
RESULTS: Data were analysed statistically using analysis of variance. Mean scores of PPD, percentage of pocket depth ≥ 4 mm, and CAL (p
Materials and Methods: A total number of 50 participants (40 with chronic generalized periodontitis and 10 periodontally healthy volunteers) of 30-50 years were included in the study. Clinical parameters such as simplified oral hygiene index (OHI-S), gingival index, probing depth, and clinical attachment loss (CAL) were measured, and then, saliva and blood sample collection was done and analyzed for ALP levels by spectrometry. The clinical parameters along with saliva and serum ALP levels were reevaluated after 30 days following Phase I periodontal therapy. The results were statistically analyzed using paired t-test and one-way ANOVA.
Results: The saliva and serum ALP levels were significantly increased in patients with chronic generalized periodontitis with an increase in clinical parameters such as OHI-S, gingival index, probing depth, and CAL when compared with periodontally healthy individuals. The saliva and serum ALP levels were significantly decreased following Phase I periodontal, therapy along with improvement in clinical parameters.
Conclusion: With the limitations of the present study, it could be concluded that ALP levels in saliva can be used for the diagnosis of active phase of periodontal disease and also for evaluation of the treatment outcomes following Phase I periodontal therapy.
METHODOLOGY: Five electronic databases were searched for studies that compared implant outcomes in patients with differing HbA1c values. Research quality was evaluated using Risk of Bias in Nonrandomized Studies of Interventions (ROBINS-I) tool. Narrative synthesis and meta-analysis were performed for survival rate, plaque index (PI), bleeding on probing (BOP), probing pocket depth, and marginal bone loss (MBL). Categorical dose-response meta-analysis (DRMA) was conducted according to length of follow-up.
RESULTS: Twenty-two studies met the inclusion criteria. Prospective studies were mostly of moderate quality, but non-prospective papers had serious to critical risk of bias. Survival rate was high for the first 3 years (92.6%-100%) for patients with HbA1c less than 8%. Meta-analysis revealed worsening clinical parameters with increasing HbA1c. DRMA further established a significant dose-response relationship between glycemic control with BOP (10% more bleeding, 95% CI 0.05-0.16, P = .008) and MBL (0.05 mm more bone loss, 95% CI 0.01-0.09, P = .002) per HbA1c category, but no association with probing pocket depth. Osseointegration progressed at a slower rate, and inflammatory cytokines and bone biomarkers were adversely affected in patients with HbA1c above 8%.
CONCLUSION: Moderate evidence suggests a high short-term survival but possible dose-response trend of worsening BOP and MBL in association with glycemic control. Clinically, HbA1c values must be considered for risk assessment before placement and throughout the lifespan of the implant placed in a patient with diabetes.