Displaying all 4 publications

Abstract:
Sort:
  1. Nevara GA, Muhammad SKS, Zawawi N, Mustapha NA, Karim R
    J Sci Food Agric, 2024 Apr;104(6):3216-3227.
    PMID: 38072678 DOI: 10.1002/jsfa.13208
    BACKGROUND: Kenaf seeds are underutilized kenaf plant by-products, containing essential nutrients including dietary fiber (DF), which can be potentially utilized as food ingredients. The present study aimed to evaluate the physicochemical characteristics of kenaf seed fiber fractions extracted from kenaf seed.

    RESULTS: Defatted kenaf seed powder yielded four DF fractions: alkali-soluble hemicellulose (146.4 g kg-1 ), calcium-bound pectin (10.3 g kg-1 ) and acid-soluble pectin (25.4 g kg-1 ) made up the soluble fibre fraction, whereas cellulose (202.2 g kg-1 ) comprised the insoluble fraction. All fractions were evaluated for their physicochemical properties. The DF fractions contained glucose, mannose, xylose and arabinose, and a small amount of uronic acid (1.2-2.7 g kg-1 ). The isolated pectin fractions had a low degree of esterification (14-30%). All the isolated DF fractions had high average molecular weights ranging from 0.3 to 4.3 × 106 g mol-1 . X-ray diffractogram analysis revealed that the fractions consisted mainly of an amorphous structure with a relative crystallinity ranging from 31.6% to 44.1%. The Fourier-transform infrared spectroscopy spectrum of kenaf seed and its DF fractions showed typical absorption of polysaccharides, with the presence of hydroxyl, carboxyl, acetyl and methyl groups. Scanning electron microscopy analysis demonstrated that the raw material with the rigid structure resulted in soluble and insoluble DF fractions with more fragile and fibrous appearances, respectively. The soluble DF demonstrated greater flowability and compressibility than the insoluble fractions.

    CONCLUSION: These findings provide novel information on the DF fractions of kenaf seeds, which could be used as a potential new DF for the food industry. © 2023 Society of Chemical Industry.

    Matched MeSH terms: Pectins/analysis
  2. Wai WW, Alkarkhi AF, Easa AM
    J Food Sci, 2009 Oct;74(8):C637-41.
    PMID: 19799660 DOI: 10.1111/j.1750-3841.2009.01331.x
    Response surface methodology (RSM) was carried out to study the effect of temperature, pH, and heating time as input variables on the yield and degree of esterification (DE) as the output (responses). The results showed that yield and DE of extracted pectin ranged from 2.27% to 9.35% (w/w, based on dry weight of durian rind) and 47.66% to 68.6%, respectively. The results also showed that a 2nd-order model adequately fitted the experimental data for the yield and DE. Optimum condition for maximum yield and DE was achieved at 85 degrees C, a time of either 4 or 1 h, and a pH of 2 or 2.5.
    Matched MeSH terms: Pectins/analysis
  3. Nagarajan J, Krishnamurthy NP, Nagasundara Ramanan R, Raghunandan ME, Galanakis CM, Ooi CW
    Food Chem, 2019 Oct 30;296:47-55.
    PMID: 31202305 DOI: 10.1016/j.foodchem.2019.05.135
    The redfleshed pulp discarded from pink guava puree industry is a rich source of lycopene and pectin. In this study, we developed a facile extraction process employing water as the primary extraction medium to isolate the lycopene and pectin from pink guava decanter. When the decanter was suspended in water, the complexation of lycopene and pectin formed the cloudy solution, where the colloidal complexes were recovered through centrifugation. The presence of lycopene and pectin in the complex was confirmed by the spectroscopic, microscopic and chromatographic analyses. The lycopene fractionated from the complexes had a purity level of 99% and was in all-trans configuration. The colloidal complexes yielding the highest concentration of lycopene was obtained at pH 7, 1% (w/v) solid loading and 25 °C. The experimental data of time-course extraction of lycopene-pectin complex were best fitted with two-site kinetic model, hinting the fast- and slow-release phases in the extraction process.
    Matched MeSH terms: Pectins/analysis
  4. Tan MS, Rahman S, Dykes GA
    Appl Environ Microbiol, 2016 01 15;82(2):680-8.
    PMID: 26567310 DOI: 10.1128/AEM.02609-15
    Minimally processed fresh produce has been implicated as a major source of foodborne microbial pathogens globally. These pathogens must attach to the produce in order to be transmitted. Cut surfaces of produce that expose cell walls are particularly vulnerable. Little is known about the roles that different structural components (cellulose, pectin, and xyloglucan) of plant cell walls play in the attachment of foodborne bacterial pathogens. Using bacterial cellulose-derived plant cell wall models, we showed that the presence of pectin alone or xyloglucan alone affected the attachment of three Salmonella enterica strains (Salmonella enterica subsp. enterica serovar Enteritidis ATCC 13076, Salmonella enterica subsp. enterica serovar Typhimurium ATCC 14028, and Salmonella enterica subsp. indica M4) and Listeria monocytogenes ATCC 7644. In addition, we showed that this effect was modulated in the presence of both polysaccharides. Assays using pairwise combinations of S. Typhimurium ATCC 14028 and L. monocytogenes ATCC 7644 showed that bacterial attachment to all plant cell wall models was dependent on the characteristics of the individual bacterial strains and was not directly proportional to the initial concentration of the bacterial inoculum. This work showed that bacterial attachment was not determined directly by the plant cell wall model or bacterial physicochemical properties. We suggest that attachment of the Salmonella strains may be influenced by the effects of these polysaccharides on physical and structural properties of the plant cell wall model. Our findings improve the understanding of how Salmonella enterica and Listeria monocytogenes attach to plant cell walls, which may facilitate the development of better ways to prevent the attachment of these pathogens to such surfaces.
    Matched MeSH terms: Pectins/analysis*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links