Aims: The primary objective was to evaluate whether addiction-specific cues compared with neutral cues, i.e., negative emotional valence cues vs. positive emotional valence cues, would elicit activation of the dopaminergic reward network (i.e., precuneus, nucleus accumbens, and amygdala) and consecutive deactivation of the executive control network [i.e., medial prefrontal cortex (mPFC) and dorsolateral prefrontal cortex (dlPFC)], in the PIGU subjects.
Method: An fMRI cue-induced reactivity study was performed using negative emotional valence, positive emotional valence, and truly neutral cues, using Instagram themes. Thirty subjects were divided into PIGU and healthy control (HC) groups, based on a set of diagnostic criteria using behavioral tests, including the Modified Instagram Addiction Test (IGAT), to assess the severity of PIGU. In-scanner recordings of the subjects' responses to the images and regional activity of the neural addiction pathways were recorded.
Results: Negative emotional valence > positive emotional valence cues elicited increased activations in the precuneus in the PIGU group. A negative and moderate correlation was observed between PSC at the right mPFC with the IGAT scores of the PIGU subjects when corrected for multiple comparisons [r = -0.777, (p < 0.004, two-tailed)].
Conclusion: Addiction-specific Instagram-themed cues identify the neurobiological underpinnings of Instagram addiction. Activations of the dopaminergic reward system and deactivation of the executive control network indicate converging neuropathological pathways between Instagram addiction and other types of addictions.
Aim: We are presenting a patient with an unusual cough-induced ICA dissection.
Case Report: A 42-year-old health care worker presented with bilateral hand numbness which resolved spontaneously. This initial episode was followed 9 days later with intermittent episodes of right hand and leg weakness with speech difficulty. Two days later, he had another episode of speech difficulty. One week prior to the first presentation, he had upper respiratory tract infection with ongoing strong bouts of coughing. Magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) of the brain showed early ischaemic changes at the left frontal and left parietal regions. MR angiography (MRA) showed high signal intensity at the left proximal ICA and poor flow beyond the left carotid bulb. Cerebral angiography revealed left ICA dissection.
Conclusion: Proper identification of cough-induced extracranial ICA dissection is important because this is treatable.