Displaying all 6 publications

Abstract:
Sort:
  1. Wong KT, Shieh WJ, Zaki SR, Tan CT
    Springer Semin. Immunopathol., 2002;24(2):215-28.
    PMID: 12503066
    The Nipah virus outbreak represented one of several bat-derived paramyxoviruses that has emerged during the last decade to cause severe human and animal disease. The pathogenesis of Nipah infection is associated with its ability to infect blood vessels and extravascular parenchyma in many organs, particularly in the central nervous system. The clinical manifestations of acute Nipah infection range from fever and mild headache to a severe acute encephalitic syndrome in which there is a high mortality. Much remains to be understood about this new disease, including its intriguing ability to cause relapsing encephalitis in some survivors. This review provides an overview of the Nipah outbreak, focussing on what is presently known about it as an infectious disease, including the clinical aspects, pathology and pathogenesis.
    Matched MeSH terms: Paramyxovirinae/pathogenicity*
  2. Westbury HA
    Rev. - Off. Int. Epizoot., 2000 Apr;19(1):151-9.
    PMID: 11189712
    The author provides an account of the discovery of a previously undescribed disease of horses and a description of the studies involved in determining the aetiology of the disease. The causative virus, now named Hendra virus (HeV), is the reference virus for a proposed new genus within the virus family Paramyxoviridae. The virus is a lethal zoonotic agent able to cause natural disease in humans and horses and experimentally induced disease in cats, guinea-pigs and mice. The virus also naturally infects species of the family Megachiroptera, mainly subclinically, and such animals are the natural host of HeV. The virus appears to transmit readily between species of Megachiroptera, but not readily between horses under natural and experimental conditions, or from horses to humans. The method of transmission from bats to horses is not known. Three incidents of HeV disease in horses have been recorded in Australia--two in 1994 which caused the death of two humans and fifteen horses and one in 1999 which involved the death of a single horse. Hendra virus is related to Nipah virus, the virus that caused disease and mortality in humans, pigs, dogs and cats in Malaysia during 1998 and 1999.
    Matched MeSH terms: Paramyxovirinae/pathogenicity
  3. Chua KB, Chua BH, Wang CW
    Malays J Pathol, 2002 Jun;24(1):15-21.
    PMID: 16329551
    In late 1998, a novel paramyxovirus named Nipah virus, emerged in Malaysia, causing fatal disease in domestic pigs and humans with substantial economic loss to the local pig industry. Pteropid fruitbats have since been identified as a natural reservoir host. Over the last two decades, the forest habitat of these bats in Southeast Asia has been substantially reduced by deforestation for pulpwood and industrial plantation. In 1997/1998, slash-and-burn deforestation resulted in the formation of a severe haze that blanketed much of Southeast Asia in the months directly preceding the Nipah virus disease outbreak. This was exacerbated by a drought driven by the severe 1997-1998 El Niño Southern Oscillation (ENSO) event. We present data suggesting that this series of events led to a reduction in the availability of flowering and fruiting forest trees for foraging by fruitbats and culminated in unprecedented encroachment of fruitbats into cultivated fruit orchards in 1997/1998. These anthropogenic events, coupled with the location of piggeries in orchards and the design of pigsties allowed transmission of a novel paramyxovirus from its reservoir host to the domestic pig and ultimately to the human population.
    Matched MeSH terms: Paramyxovirinae/pathogenicity
  4. Solomon T
    Curr. Opin. Neurol., 2003 Jun;16(3):411-8.
    PMID: 12858080
    The exotic and emerging viral encephalitides are caused by animal or human viruses and characterised by sudden unexpected outbreaks of neurological disease, usually in tropical and sub-tropical regions, but sometimes spreading to temperate areas. Although a wide range of viruses come within this label, as this review highlights, there are common research questions as to the origin and spread of the viruses, the contribution of viral and host factors to the clinical presentations and outcome, and the possibilities for treatment and vaccination.
    Matched MeSH terms: Paramyxovirinae/pathogenicity
  5. Wong KT
    Neuropathol. Appl. Neurobiol., 2000 Aug;26(4):313-8.
    PMID: 10931364
    Two major epidemics of viral encephalitis occurred in Asia in 1997 and 1998. The first was a re-emergence of neurovirulent strains of enterovirus 71, which caused severe encephalomyelitis in children in Malaysia, Taiwan and Japan, on a background of hand, foot and mouth disease. Necropsy studies of patients who died of enterovirus 71 infection showed severe perivascular cuffing, parenchymal inflammation and neuronophagia in the spinal cord, brainstem and diencephalon, and in focal areas in the cerebellum and cerebrum. Although no viral inclusions were detected, immunohistochemistry showed viral antigen in the neuronal cytoplasm. Inflammation was often more extensive than neuronal infection, suggesting that other factors, in addition to direct viral cytolysis, may be involved in tissue damage. The second epidemic of viral encephalitis was the result of a novel paramyxovirus called Nipah, which mainly involved pig handlers in Malaysia and Singapore. Pathological evidence suggested that the endothelium of small blood vessels in the central nervous system was particularly susceptible to infection. This led to disseminated endothelial damage and syncytium formation, vasculitis, thrombosis, ischaemia and microinfarction. However, there was also evidence of neuronal infection by the virus and this may also have contributed to the neurological dysfunction in Nipah encephalitis. Some patients who seemed to recover from the acute symptoms have been re-admitted with clinical findings suggestive of relapsing encephalitis. As these two epidemics indicate, the emergence and re-emergence of viral encephalitides continue to pose considerable challenges to the neuropathologist, in establishing the diagnosis and unravelling the pathogenesis of the neurological disease.
    Matched MeSH terms: Paramyxovirinae/pathogenicity
  6. Middleton DJ, Westbury HA, Morrissy CJ, van der Heide BM, Russell GM, Braun MA, et al.
    J Comp Pathol, 2002 Feb-Apr;126(2-3):124-36.
    PMID: 11945001 DOI: 10.1053/jcpa.2001.0532
    A human isolate of Nipah virus from an outbreak of febrile encephalitis in Malaysia that coincided with a field outbreak of disease in pigs was used to infect eight 6-week-old pigs orally or subcutaneously and two cats oronasally. In pigs, the virus induced a respiratory and neurological syndrome consistent with that observed in the Malaysian pigs. Not all the pigs showed clinical signs, but Nipah virus was recovered from the nose and oropharynx of both clinically and sub-clinically infected animals. Natural infection of in-contact pigs, which was readily demonstrated, appeared to be acute and self-limiting. Subclinical infections occurred in both inoculated and in-contact pigs. Respiratory and neurological disease was also produced in the cats, with recovery of virus from urine as well as from the oropharynx. The clinical and pathological syndrome induced by Nipah virus in cats was comparable with that associated with Hendra virus infection in this species, except that in fatal infection with Nipah virus there was extensive inflammation of the respiratory epithelium, associated with the presence of viral antigen. Viral shedding via the nasopharynx, as observed in pigs and cats in the present study, was not a regular feature of earlier reports of experimental Hendra virus infection in cats and horses. The findings indicate the possibility of field transmission of Nipah virus between pigs via respiratory and oropharyngeal secretions.
    Matched MeSH terms: Paramyxovirinae/pathogenicity*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links