METHODS: To discover novel pancreatic cancer risk loci and possible causal genes, we performed a pancreatic cancer transcriptome-wide association study in Europeans using three approaches: FUSION, MetaXcan, and Summary-MulTiXcan. We integrated genome-wide association studies summary statistics from 9040 pancreatic cancer cases and 12 496 controls, with gene expression prediction models built using transcriptome data from histologically normal pancreatic tissue samples (NCI Laboratory of Translational Genomics [n = 95] and Genotype-Tissue Expression v7 [n = 174] datasets) and data from 48 different tissues (Genotype-Tissue Expression v7, n = 74-421 samples).
RESULTS: We identified 25 genes whose genetically predicted expression was statistically significantly associated with pancreatic cancer risk (false discovery rate < .05), including 14 candidate genes at 11 novel loci (1p36.12: CELA3B; 9q31.1: SMC2, SMC2-AS1; 10q23.31: RP11-80H5.9; 12q13.13: SMUG1; 14q32.33: BTBD6; 15q23: HEXA; 15q26.1: RCCD1; 17q12: PNMT, CDK12, PGAP3; 17q22: SUPT4H1; 18q11.22: RP11-888D10.3; and 19p13.11: PGPEP1) and 11 at six known risk loci (5p15.33: TERT, CLPTM1L, ZDHHC11B; 7p14.1: INHBA; 9q34.2: ABO; 13q12.2: PDX1; 13q22.1: KLF5; and 16q23.1: WDR59, CFDP1, BCAR1, TMEM170A). The association for 12 of these genes (CELA3B, SMC2, and PNMT at novel risk loci and TERT, CLPTM1L, INHBA, ABO, PDX1, KLF5, WDR59, CFDP1, and BCAR1 at known loci) remained statistically significant after Bonferroni correction.
CONCLUSIONS: By integrating gene expression and genotype data, we identified novel pancreatic cancer risk loci and candidate functional genes that warrant further investigation.
METHODS: We analyzed data from 524 families with PALB2 PVs from 21 countries. Complex segregation analysis was used to estimate relative risks (RRs; relative to country-specific population incidences) and absolute risks of cancers. The models allowed for residual familial aggregation of breast and ovarian cancer and were adjusted for the family-specific ascertainment schemes.
RESULTS: We found associations between PALB2 PVs and risk of female breast cancer (RR, 7.18; 95% CI, 5.82 to 8.85; P = 6.5 × 10-76), ovarian cancer (RR, 2.91; 95% CI, 1.40 to 6.04; P = 4.1 × 10-3), pancreatic cancer (RR, 2.37; 95% CI, 1.24 to 4.50; P = 8.7 × 10-3), and male breast cancer (RR, 7.34; 95% CI, 1.28 to 42.18; P = 2.6 × 10-2). There was no evidence for increased risks of prostate or colorectal cancer. The breast cancer RRs declined with age (P for trend = 2.0 × 10-3). After adjusting for family ascertainment, breast cancer risk estimates on the basis of multiple case families were similar to the estimates from families ascertained through population-based studies (P for difference = .41). On the basis of the combined data, the estimated risks to age 80 years were 53% (95% CI, 44% to 63%) for female breast cancer, 5% (95% CI, 2% to 10%) for ovarian cancer, 2%-3% (95% CI females, 1% to 4%; 95% CI males, 2% to 5%) for pancreatic cancer, and 1% (95% CI, 0.2% to 5%) for male breast cancer.
CONCLUSION: These results confirm PALB2 as a major breast cancer susceptibility gene and establish substantial associations between germline PALB2 PVs and ovarian, pancreatic, and male breast cancers. These findings will facilitate incorporation of PALB2 into risk prediction models and optimize the clinical cancer risk management of PALB2 PV carriers.
CONCLUSIONS: Herein, the expression profiles, oncogenic roles, regulators and inhibitors of DNMT1 in PDACs are presented and discussed. DNMT1 is overexpressed in PDAC cases compared with non-cancerous pancreatic ducts, and its expression gradually increases from pre-neoplastic lesions to PDACs. DNMT1 plays oncogenic roles in suppressing PDAC cell differentiation and in promoting their proliferation, migration and invasion, as well as in induction of the self-renewal capacity of PDAC cancer stem cells. These effects are achieved via promoter hypermethylation of tumor suppressor genes, including cyclin-dependent kinase inhibitors (e.g., p14, p15, p16, p21 and p27), suppressors of epithelial-mesenchymal transition (e.g., E-cadherin) and tumor suppressor miRNAs (e.g., miR-148a, miR-152 and miR-17-92 cluster). Pre-clinical investigations have shown the potency of novel non-nucleoside DNMT1 inhibitors against PDAC cells. Finally, phase I/II clinical trials of DNMT1 inhibitors (azacitidine, decitabine and guadecitabine) in PDAC patients are currently underway, where these inhibitors have the potential to sensitize PDACs to chemotherapy and immune checkpoint blockade therapy.
METHODS: We utilized data from genome-wide association studies within the Pancreatic Cancer Cohort Consortium and Pancreatic Cancer Case-Control Consortium, involving approximately 9,269 cases and 12,530 controls of European descent, to evaluate associations between pancreatic cancer risk and genetically predicted plasma n-6 PUFA levels. Conventional MR analyses were performed using individual-level and summary-level data.
RESULTS: Using genetic instruments, we did not find evidence of associations between genetically predicted plasma n-6 PUFA levels and pancreatic cancer risk [estimates per one SD increase in each PUFA-specific weighted genetic score using summary statistics: linoleic acid odds ratio (OR) = 1.00, 95% confidence interval (CI) = 0.98-1.02; arachidonic acid OR = 1.00, 95% CI = 0.99-1.01; and dihomo-gamma-linolenic acid OR = 0.95, 95% CI = 0.87-1.02]. The OR estimates remained virtually unchanged after adjustment for covariates, using individual-level data or summary statistics, or stratification by age and sex.
CONCLUSIONS: Our results suggest that variations of genetically determined plasma n-6 PUFA levels are not associated with pancreatic cancer risk.
IMPACT: These results suggest that modifying n-6 PUFA levels through food sources or supplementation may not influence risk of pancreatic cancer.
METHODS: We conducted a large agnostic pathway-based meta-analysis of GWAS data using the summary-based adaptive rank truncated product method to identify gene sets and pathways associated with pancreatic ductal adenocarcinoma (PDAC) in 9040 cases and 12 496 controls. We performed expression quantitative trait loci (eQTL) analysis and functional annotation of the top SNPs in genes contributing to the top associated pathways and gene sets. All statistical tests were two-sided.
RESULTS: We identified 14 pathways and gene sets associated with PDAC at a false discovery rate of less than 0.05. After Bonferroni correction (P ≤ 1.3 × 10-5), the strongest associations were detected in five pathways and gene sets, including maturity-onset diabetes of the young, regulation of beta-cell development, role of epidermal growth factor (EGF) receptor transactivation by G protein-coupled receptors in cardiac hypertrophy pathways, and the Nikolsky breast cancer chr17q11-q21 amplicon and Pujana ATM Pearson correlation coefficient (PCC) network gene sets. We identified and validated rs876493 and three correlating SNPs (PGAP3) and rs3124737 (CASP7) from the Pujana ATM PCC gene set as eQTLs in two normal derived pancreas tissue datasets.
CONCLUSION: Our agnostic pathway and gene set analysis integrated with functional annotation and eQTL analysis provides insight into genes and pathways that may be biologically relevant for risk of PDAC, including those not previously identified.
METHODS: We investigated the anti-proliferative efficacy of polar leaf extracts (LP), non-polar leaf extracts (LN), polar stem extract (SP) and non-polar stem extracts (SN) in human breast, colorectal, lung, endometrial, nasopharyngeal, and pancreatic cancer cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT assay. The most potent extracts was tested along with gemcitabine using our established drug combination analysis. The effect of the combinatory treatment in apoptosis were quantified using enzyme-linked immunosorbent assay (ELISA), Annexin V assay, antibody array and immunoblotting. Statistical significance was analysed using one-way analysis of variance (ANOVA) and post hoc Dunnett's test. A p-value of less than 0.05 (p