Displaying all 14 publications

Abstract:
Sort:
  1. Zhang S, Liu Q, Yang C, Li X, Chen Y, Wu J, et al.
    Reprod Biomed Online, 2024 Apr;48(4):103727.
    PMID: 38402677 DOI: 10.1016/j.rbmo.2023.103727
    RESEARCH QUESTION: Does type 1 diabetes mellitus (T1DM) affect reproductive health of female patients? What is the potential mechanism of reproductive dysfunction in female patients caused by T1DM?

    DESIGN: Preliminary assessment of serum levels of female hormones in women with or without T1DM. Then histological and immunological examinations were carried out on the pancreas, ovaries and uteri at different stages in non-obese diabetic (NOD) and Institute of Cancer Research (ICR) mice, as well as assessment of their fertility. A protein array was carried out to detect the changes in serum inflammatory cytokines. Furthermore, RNA-sequencing was used to identify the key abnormal genes/pathways in ovarian and uterine tissues of female NOD mice, which were further verified at the protein level.

    RESULTS: Testosterone levels were significantly increased (P = 0.0036) in female mice with T1DM. Increasing age in female NOD mice was accompanied by obvious lymphocyte infiltration in the pancreatic islets. Moreover, the levels of serum inflammatory factors in NOD mice were sharply increased with increasing age. The fertility of female NOD mice declined markedly, and most were capable of conceiving only once. Furthermore, ovarian and uterine morphology and function were severely impaired in NOD female mice. Additionally, ovarian and uterine tissues revealed that the differentially expressed genes were primarily enriched in metabolism, cytokine-receptor interactions and chemokine signalling pathways.

    CONCLUSION: T1DM exerts a substantial impairment on female reproductive health, leading to diminished fertility, potentially associated with immune disorders and alterations in energy metabolism.

    Matched MeSH terms: Pancreas/metabolism
  2. Mashori GR, Tariq AR, Shahimi MM, Suhaimi H
    Singapore Med J, 1996 Jun;37(3):278-81.
    PMID: 8942229
    Treatment of hypertension has reduced the incidence of stroke, heart failure and renal failure. However, the incidence of coronary heart disease is not reduced to the same degree. Many of the drugs advocated as first-line drugs in the step-wise therapy have been shown to cause carbohydrate intolerance and it is an independent risk factor in the development of coronary heart disease. It is thus important to identify the antihypertensive drugs that may cause deterioration in glucose tolerance. Cicletanine, the first derivative of the furopyridines, is a new class of antihypertensive agents. It acts directly on vascular endothelium cells by increasing prostacyclin synthesis. It also decreases intracytosolic calcium levels in smooth muscles. The purpose of this study is to evaluate the effects of Cicletanine on insulin release in rat isolated pancreas by the perfusion technique adapted from Loubatieres and co-workers (1972). Doses used were based on therapeutic peak plasma concentration. Diazoxide was used as a positive control ie a known insulin suppressant. Cicletanine at 1/10 and equivalent therapeutic concentrations (0.5 microgram/mL and 5.0 micrograms/mL) did not suppress insulin release. However, at concentration exceeding 10X its therapeutic levels (50 micrograms/mL) it begins to suppress insulin release. In conclusion, Cicletanine did not inhibit insulin release at concentrations within the therapeutic range.
    Matched MeSH terms: Pancreas/metabolism
  3. Aamir K, Sethi G, Afrin MR, Hossain CF, Jusuf PR, Sarker SD, et al.
    Life Sci, 2023 Aug 15;327:121856.
    PMID: 37307966 DOI: 10.1016/j.lfs.2023.121856
    BACKGROUND: Arjunolic acid (AA) is a potent phytochemical with multiple therapeutics effects. In this study, AA is evaluated on type 2 diabetic (T2DM) rats to understand the mechanism of β-cell linkage with Toll-like receptor 4 (TLR-4) and canonical Wnt signaling. However, its role in modulating TLR-4 and canonical Wnt/β-catenin crosstalk on insulin signaling remains unclear during T2DM. Aim The current study is aimed to examine the potential role of AA on insulin signaling and TLR-4-Wnt crosstalk in the pancreas of type 2 diabetic rats.

    METHOD: Multiple methods were used to determine molecular cognizance of AA in T2DM rats, when treated with different dosage levels. Histopathological and histomorphometry analysis was conducted using masson trichrome and H&E stains. While, protein and mRNA expressions of TLR-4/Wnt and insulin signaling were assessed using automated Western blotting (jess), immunohistochemistry, and RT-PCR.

    RESULTS: Histopathological findings revealed that AA had reversed back the T2DM-induced apoptosis and necrosis caused to rats pancreas. Molecular findings exhibited prominent effects of AA in downregulating the elevated level of TLR-4, MyD88, NF-κB, p-JNK, and Wnt/β-catenin by blocking TLR-4/MyD88 and canonical Wnt signaling in diabetic pancreas, while IRS-1, PI3K, and pAkt were all upregulated by altering the NF-κB and β-catenin crosstalk during T2DM.

    CONCLUSION: Overall results, indicate that AA has potential to develop as an effective therapeutic in the treatment of T2DM associated meta-inflammation. However, future preclinical research at multiple dose level in a long-term chronic T2DM disease model is warranted to understand its clinical relevance in cardiometabolic disease.

    Matched MeSH terms: Pancreas/metabolism
  4. Wong RS
    Exp Diabetes Res, 2011;2011:406182.
    PMID: 21747828 DOI: 10.1155/2011/406182
    Diabetes mellitus is a chronic disease with many debilitating complications. Treatment of diabetes mellitus mainly revolves around conventional oral hypoglycaemic agents and insulin replacement therapy. Recently, scientists have turned their attention to the generation of insulin-producing cells (IPCs) from stem cells of various sources. To date, many types of stem cells of human and animal origins have been successfully turned into IPCs in vitro and have been shown to exert glucose-lowering effect in vivo. However, scientists are still faced with the challenge of producing a sufficient number of IPCs that can in turn produce sufficient insulin for clinical use. A careful choice of stem cells, methods, and extrinsic factors for induction may all be contributing factors to successful production of functional beta-islet like IPCs. It is also important that the mechanism of differentiation and mechanism by which IPCs correct hyperglycaemia are carefully studied before they are used in human subjects.
    Matched MeSH terms: Pancreas/metabolism
  5. Nurdiana S, Goh YM, Ahmad H, Dom SM, Syimal'ain Azmi N, Noor Mohamad Zin NS, et al.
    BMC Complement Altern Med, 2017 Jun 02;17(1):290.
    PMID: 28576138 DOI: 10.1186/s12906-017-1762-8
    BACKGROUND: The potential application of Ficus deltoidea and vitexin for the management of symptomatologies associated with diabetes mellitus (DM) has gained much attention. However, less firm evidence comes from data to augment our understanding of the role of F. deltoidea and vitexin in protecting pancreatic β-cells. The aim of this study was to assess histological and oxidative stress changes in the pancreas of streptozotocin (STZ)-induced diabetic rats following F. deltoidea extract and vitexin treatment.

    METHODS: F. deltoidea and vitexin was administrated orally to six-weeks STZ-induced diabetic rats over 8 weeks period. The glucose and insulin tolerances were assessed by intraperitoneal glucose (2 g/kg) tolerance test (IPGTT) and intraperitoneal insulin (0.65 U/kg) tolerance test (IPITT), respectively. Subsequently, insulin resistance was assessed by homeostasis assessment model of insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI) and the insulin/triglyceride-derived McAuley index. The histological changes in the pancreas were then observed by hematoxylin-eosin (H&E) staining. Further, the pattern of fatty acid composition and infrared (IR) spectra of the serum and pancreas were monitored by gas chromatography (GC) method and Fourier Transform Infrared (FT-IR) spectroscopy.

    RESULTS: F. deltoidea and vitexin increased pancreatic antioxidant enzymes and promoted islet regeneration. However, a significant increase in insulin secretion was observed only in rats treated with F. deltoidea. More importantly, reduction of fasting blood glucose is consistent with reduced FT-IR peaks at 1200-1000 cm-1.

    CONCLUSIONS: These results accentuate that F. deltoidea and vitexin could be a potential agent to attenuate pancreatic oxidative damage and advocate their therapeutic potential for treating DM.

    Matched MeSH terms: Pancreas/metabolism*
  6. Adam SH, Giribabu N, Rao PV, Sayem AS, Arya A, Panichayupakaranant P, et al.
    Eur J Pharmacol, 2016 Jan 15;771:173-90.
    PMID: 26703866 DOI: 10.1016/j.ejphar.2015.12.028
    Effect of Rhinacanthin C on hyperglycaemia, hyperlipidemia and pancreatic dysfunction in diabetes was investigated. In-vitro effect of Rhinacanthin C on glucose uptake was studied in 3T3-L1 cell line. Meanwhile, in-vivo effect of 28-days treatment with 5mg/kg/day or 20mg/kg/day Rhinacanthin C was studied in streptozotocin-nicotinamide induced male diabetic rats. Following completion of treatment, fasting blood glucose (FBG), HbA1c, insulin and lipid profile levels were measured by biochemical assays. Histopathological changes in pancreas were observed by light microscopy while levels of pancreatic oxidative stress were determined by enzymatic assays. Expression of insulin, TNFα, Ikkβ and caspase-3 in pancreas were quantified by immunohistochemistry. Molecular docking was used to identify interactions between Rhinacathin C with SOD or GPx enzymes. Dose-dependent increase in glucose uptake was observed with increasing doses of Rhinacathin C. Plasma FBG, HbA1c and lipid profile except LDL levels and pancreatic malonaldehyde level were reduced but serum insulin and pancreatic anti-oxidative enzymes (SOD, CAT and GPx) levels were increased in diabetic rats receiving Rhinacanthin C treatment. Decreased pancreatic histopathological changes with higher pancreatic insulin and Glut-2 levels but lower TNFα, Ikkβ and caspase-3 levels were observed in diabetic rats receiving Rhinacanthin C (P<0.05 compared to non-treated diabetic rats). In diabetic rats which received Rhinacathin C, changes in the above parameters did not achieve the value in non-diabetic rats. Docking shows Rhinacathin C possesses high degree interactions with SOD and GPx. By possessing these effects, Rhinacanthin C could be used as agent to alleviate pancreatic and other complications in diabetes.
    Matched MeSH terms: Pancreas/metabolism
  7. Giribabu N, Kumar KE, Rekha SS, Muniandy S, Salleh N
    Int J Med Sci, 2014;11(11):1172-84.
    PMID: 25249786 DOI: 10.7150/ijms.9056
    The effect of C. borivilianum root on blood glucose, glycated hemoglobin (HbAIc), insulin and lipid profile levels in diabetes mellitus are not fully understood. This study therefore investigated the effect of C. borivilianum root on the above parameters and oxidative stress of the pancreas in diabetes.
    METHODS: C. borivilianum root aqueous extract (250 and 500 mg/kg/day) was administered to streptozotocin (STZ)-induced male diabetic rats for 28 days. Body weight, blood glucose, HbA1c, insulin, lipid profile levels and glucose homeostasis indices were determined. Histopathological changes and oxidative stress parameters i.e. lipid peroxidation (LPO) and antioxidant enzymes activity levels of the pancreas were investigated.
    RESULTS: C. borivilianum root extract treatment to diabetic rats maintained near normal body weight, blood glucose, HbA1c, lipid profile and insulin levels with higher HOMA-β cell functioning index, number of Islets/pancreas, number of β-cells/Islets however with lower HOMA-insulin resistance (IR) index as compared to non-treated diabetic rats. Negative correlations between serum insulin and blood glucose, HbA1c, triglyceride (TG) and total cholesterol (TC) levels were observed. C. borivilianum root extract administration prevented the increase in lipid peroxidation and the decrease in activity levels of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) with mild histopathological changes in the pancreas of diabetic rats.
    CONCLUSIONS: C. borivilianum root maintains near normal levels of these metabolites and prevented oxidative stress-induced damage to the pancreas in diabetes.
    KEYWORDS: Chlorophytum borivilianum; diabetes; glucose; lipid profile; oxidative stress.; pancreas
    Matched MeSH terms: Pancreas/metabolism*
  8. Erejuwa OO, Sulaiman SA, Wahab MS
    Molecules, 2011 Dec 28;17(1):248-66.
    PMID: 22205091 DOI: 10.3390/molecules17010248
    Evidence shows that honey improves glycemic control in diabetes mellitus. Besides its hypoglycemic effect, studies indicate that honey ameliorates lipid abnormalities in rats and humans with diabetes. The majority of these studies do not examine the mechanisms by which honey ameliorates glycemic and/or lipid derangements. The gut microbiota is now recognized for its ability to increase energy harvest from the diet and alter lipid metabolism of the host. Recently available data implicate a causal role of these gut microbes in the pathophysiology of obesity, insulin resistance, and diabetes mellitus. In this review, we present some of the latest findings linking gut microbiota to pathogenesis of obesity, insulin resistance, and diabetes mellitus. The review also underlines data that demonstrate the beneficial effects of oligosaccharides on various abnormalities commonly associated with these disorders. Based on the similarities of some of these findings with those of honey, together with the evidence that honey contains oligosaccharides, we hypothesize that oligosaccharides present in honey might contribute to the antidiabetic and other health-related beneficial effects of honey. We anticipate that the possibility of oligosaccharides in honey contributing to the antidiabetic and other health-related effects of honey will stimulate a renewed research interest in this field.
    Matched MeSH terms: Pancreas/metabolism
  9. Ghazalli N, Wu X, Walker S, Trieu N, Hsin LY, Choe J, et al.
    Stem Cells Dev, 2018 07 01;27(13):898-909.
    PMID: 29717618 DOI: 10.1089/scd.2017.0160
    Pluripotent stem cells may serve as an alternative source of beta-like cells for replacement therapy of type 1 diabetes; however, the beta-like cells generated in many differentiation protocols are immature. The maturation of endogenous beta cells involves an increase in insulin expression starting in late gestation and a gradual acquisition of the abilities to sense glucose and secrete insulin by week 2 after birth in mice; however, what molecules regulate these maturation processes are incompletely known. In this study, we aim to identify small molecules that affect immature beta cells. A cell-based assay, using pancreatic beta-like cells derived from murine embryonic stem (ES) cells harboring a transgene containing an insulin 1-promoter driven enhanced green fluorescent protein reporter, was used to screen a compound library (NIH Clinical Collection-003). Cortisone, a glucocorticoid, was among five positive hit compounds. Quantitative reverse transcription-polymerase chain reaction analysis revealed that glucocorticoids enhance the gene expression of not only insulin 1 but also glucose transporter-2 (Glut2; Slc2a2) and glucokinase (Gck), two molecules important for glucose sensing. Mifepristone, a pharmacological inhibitor of glucocorticoid receptor (GR) signaling, reduced the effects of glucocorticoids on Glut2 and Gck expression. The effects of glucocorticoids on ES-derived cells were further validated in immature primary islets. Isolated islets from 1-week-old mice had an increased Glut2 and Gck expression in response to a 4-day treatment of exogenous hydrocortisone in vitro. Gene deletion of GR in beta cells using rat insulin 2 promoter-driven Cre crossed with GRflox/flox mice resulted in a reduced gene expression of Glut2, but not Gck, and an abrogation of insulin secretion when islets were incubated in 0.5 mM d-glucose and stimulated by 17 mM d-glucose in vitro. These results demonstrate that glucocorticoids positively regulate glucose sensors in immature murine beta-like cells.
    Matched MeSH terms: Pancreas/metabolism*
  10. Kumar BS, Saraswathi R, Kumar KV, Jha SK, Venkates DP, Dhanaraj SA
    Drug Deliv, 2014 May;21(3):173-84.
    PMID: 24102185 DOI: 10.3109/10717544.2013.840690
    Novel LNCs (lipid nanocrystals) were developed with an aim to improve the solubility, stability and targeting efficiency of the model drug glibenclamide (GLB). PEG 20000, Tween 80 and soybean lecithin were used as polymer, surfactant and complexing agent, respectively. GLB nanocrystals (NCs) were prepared by precipitation process and complexed using hot and cold melt technique. The LNCs were evaluated by drug loading, saturation solubility (SL), optical clarity, in vitro dissolution, solid state characterization, in vivo and stability analysis. LNCs exhibited a threefold increase in SL and a higher dissolution rate than GLB. The percentage dissolution efficiency was found to decrease with increase in PEG 20000. The average particle size was in the range of 155-842 nm and zeta potential values tend to increase after complexation. X-ray powder diffractometry and differential scanning calorimetry results proved the crystallinity prevailed in the samples. Spherical shaped particles (<1000 nm) with a lipid coat on the surface were observed in scanning electron microscopy analysis. Fourier transform infrared results proved the absence of interaction between drug and polymer and stability study findings proved that LNCs were stable. In vivo study findings showed a decrease in drug concentration to pancreas in male Wistar rats. It can be concluded that LNCs are could offer enhanced solubility, dissolution rate and stability for poorly water soluble drugs. The targeting efficiency of LNCs was decreased and further membrane permeability studies ought to be carried out.
    Matched MeSH terms: Pancreas/metabolism
  11. Abdollahi M, Zuki AB, Goh YM, Rezaeizadeh A, Noordin MM
    Histol Histopathol, 2011 01;26(1):13-21.
    PMID: 21117023 DOI: 10.14670/HH-26.13
    The aim of this research was to determine the effects of Momordica charantia (MC) fruit aqueous extract on pancreatic histopathological changes in neonatal STZ-induced type-II diabetic rats. Diabetes mellitus was induced in one day Sprague-Dawley neonatal rats using a single intrapretoneal injection of streptozotocin (STZ) (85 mg/kg body weight) and monitored for 12 weeks thereafter. The diabetic rats were separated into three groups, as follows: the diabetic control group (i.e. nSTZ), the diabetic group (i.e. nSTZ/M) - which was orally given 20 mg/kg of MC fruit extract, and the diabetic group (i.e. nSTZ/G) - that was treated with glibenclamide, 0.1 mg/kg for a period of four weeks. At the end of treatment, the animals were sacrificed and blood samples were collected from the saphenous vein to measure the blood glucose and serum insulin level. The pancreatic specimens were removed and processed for light microscopy, electron microscopy examination and immunohistochemical study. The results of this study showed that MC fruit aqueous extract reduced the blood glucose level as well as glibenclamide and increased the serum insulin level in the treated diabetic rats (P<0.05). The fruit extract of MC alleviated pancreatic damage and increased the number of β-cells in the diabetic treated rats (P<0.05). Our results suggest that oral feeding of MC fruit extract may have a significant role in the renewal of pancreatic β-cells in the nSTZ rats.
    Matched MeSH terms: Pancreas/metabolism
  12. Dharmani M, Kamarulzaman K, Giribabu N, Choy KW, Zuhaida MZ, Aladdin NA, et al.
    Phytomedicine, 2019 Dec;65:153101.
    PMID: 31648126 DOI: 10.1016/j.phymed.2019.153101
    BACKGROUND: Oestrogen deficiency leads to metabolic disturbances such as insulin resistance and impairment of adipose tissue or lipid metabolism. Marantodes pumilum (Blume) Kuntze (Primulaceae) is believed to have phytoestrogenic properties and is claimed to have beneficial effects in the treatment of diabetes mellitus (DM), but the mechanism behind its phytoestrogenic effects on estrogen-deficient diabetic condition have not been fully examined.

    PURPOSE: The present study investigated the effects of oral treatment with M. pumilum var. alata (MPA) extracts on the estrogen receptor, metabolic characteristics and insulin signaling pathway in pancreas and liver of ovariectomised nicotidamide streptozotocin-induced diabetes in female rats.

    MATERIALS AND METHODS: Ovariectomised diabetic (OVXS) Sprague-Dawley rats were orally administered with either aqueous leaf extract and ethanol (50%) stem-root extract of MPA (50 or 100 mg/kg) respectively for 28 days. Metabolic parameters were evaluated by measuring fasting blood glucose, serum insulin, oral glucose and insulin tolerance test. Distribution and expression level of insulin, oxidative stress and inflammatory marker in the pancreatic islets and liver were evaluated by immunohistochemistry and western blot, respectively.

    RESULTS: Oral treatment with aqueous leaf and ethanol (50%) stem-root extracts of MPA (100 mg/kg) significantly reversed the elevated fasting blood glucose, impaired glucose and insulin tolerance. The protein expression of insulin, glucose transporter (GLUT-2 and GLUT-4) increased in the pancreatic islets and liver. Furthermore, marked improvement in the tissue morphology following treatment with MPA was observed. Similarly, the western blots analysis denotes improved insulin signaling in the liver and decreased reactive oxygen species producing enzymes, inflammatory and pro-apoptotic molecules with MPA treatment.

    CONCLUSIONS: Taken together, this work demonstrate that 100 mg/kg of aqueous leaf extract and ethanol (50%) stem-root extract of MPA improves β-cell function and insulin signaling in postmenopausal diabetes through attenuation of oxidative stress and partially mediated by oestrogen receptor stimulation.

    Matched MeSH terms: Pancreas/metabolism
  13. Adam SH, Giribabu N, Bakar NMA, Salleh N
    Biomed Pharmacother, 2017 Dec;96:716-726.
    PMID: 29040959 DOI: 10.1016/j.biopha.2017.10.042
    Marontades pumilum is claimed to have beneficial effects in the treatment of diabetes mellitus (DM), however the underlying mechanisms were not fully identified. In this study, we hypothesized that M. pumilum could help to enhance cellular glucose uptake and reduces pancreatic complications, which contributed towards its beneficial effects in DM.

    METHODS: Two parameters were measured (i) rate of glucose uptake by 3T3-L1 adipocyte cells in-vitro (ii) degree of pancreatic destruction in streptozotocin-nicotinamide induced male diabetic rats receiving M. pumilum aqueous extract (M.P) (250 and 500mg/kg/day) as reflected by levels of pancreatic oxidative stress, inflammation and apoptosis. In the meantime, phyto-chemical compounds in M.P were also identified by using LC-MS.

    RESULTS: M.P was found able to enhance glucose uptake by 3T3-L1 adipocyte cells in-vitro while its administration to the male diabetic rats causes decreased in the fasting blood glucose (FBG), glycated haemoglobin (HbA1c), total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL) levels but causes increased in insulin and high-density lipoprotein (HDL) levels, to near normal. Levels of oxidative stress in the pancreas as reflected by levels of lipid peroxidation product (LPO) decreased while levels of anti-oxidantive enzymes (SOD, CAT and GPx) in pancreas increased. Additionally, levels of inflammation as reflected by NF-κB p65, Ikkβ and TNF-α levels decreased while apoptosis levels as reflected by caspase-9 and Bax levels decreased. Anti-apoptosis marker, Bcl-2 levels in pancreas increased.

    CONCLUSIONS: The ability of M.P to enhance glucose uptake and reduces pancreatic complications could account for its beneficial effects in treating DM.

    Matched MeSH terms: Pancreas/metabolism
  14. Forid MS, Rahman MA, Aluwi MFFM, Uddin MN, Roy TG, Mohanta MC, et al.
    Molecules, 2021 Jul 30;26(15).
    PMID: 34361788 DOI: 10.3390/molecules26154634
    This research investigated a UPLC-QTOF/ESI-MS-based phytochemical profiling of Combretum indicum leaf extract (CILEx), and explored its in vitro antioxidant and in vivo antidiabetic effects in a Long-Evans rat model. After a one-week intervention, the animals' blood glucose, lipid profile, and pancreatic architectures were evaluated. UPLC-QTOF/ESI-MS fragmentation of CILEx and its eight docking-guided compounds were further dissected to evaluate their roles using bioinformatics-based network pharmacological tools. Results showed a very promising antioxidative effect of CILEx. Both doses of CILEx were found to significantly (p < 0.05) reduce blood glucose, low-density lipoprotein (LDL), and total cholesterol (TC), and increase high-density lipoprotein (HDL). Pancreatic tissue architectures were much improved compared to the diabetic control group. A computational approach revealed that schizonepetoside E, melianol, leucodelphinidin, and arbutin were highly suitable for further therapeutic assessment. Arbutin, in a Gene Ontology and PPI network study, evolved as the most prospective constituent for 203 target proteins of 48 KEGG pathways regulating immune modulation and insulin secretion to control diabetes. The fragmentation mechanisms of the compounds are consistent with the obtained effects for CILEx. Results show that the natural compounds from CILEx could exert potential antidiabetic effects through in vivo and computational study.
    Matched MeSH terms: Pancreas/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links