Displaying all 2 publications

Abstract:
Sort:
  1. Zhao L, Yang L, Ahmad K
    Hum Exp Toxicol, 2023;42:9603271221146780.
    PMID: 36607234 DOI: 10.1177/09603271221146780
    OBJECTIVES: Kaempferol (KMF), has beneficial effects against hepatic lipid accumulation. In this study, we aimed to investigate molecular mechanism underlying the protective effect of KMF on lipid accumulation.

    METHODS: HepG2 cells were treated with different concentrations of KMF and 0.5 mM palmitate (PA) for 24  h. The mRNA and protein levels of genes involved in lipid metabolism were evaluated using real-time PCR and western blot. The expression of Nrf2 was silenced using siRNA.

    RESULTS: Data indicated that KMF (20 μM) reversed PA-induced increased triglyceride (TG) levels and total lipid content. These effects were accompanied by down-regulation of the mRNA and protein levels of lipogenic genes (FAS, ACC and SREBP1), and up-regulation of genes related to fatty acid oxidation (CPT-1, HADHα and PPARα). Kaempferol significantly decreased the levels of the oxidative stress markers (ROS and MDA) and enhanced the activities of antioxidant enzymes SOD and GPx in PA-challenged cells. Luciferase analysis showed that KMF increased the transactivation of Nrf2 in hepatocytes. The results also revealed that KMF-mediated activation of Nrf2 target genes was suppressed by Nrf2 siRNA. Furthermore, Nrf2 siRNA abolished the KMF-induced reduction in ROS and MDA levels in PA treated cells. In addition, the inhibitory effect of KMF on TG levels and the mRNA and protein levels of FAS, ACC and SREPB-1 were significantly abolished by Nrf2 inhibition. Nrf2 inhibition also suppressed the KMF-induced activation of genes involved in β oxidation (CPT-1 and PPAR-α).

    CONCLUSION: The results suggest that KMF protects HepG2 cells from PA-induced lipid accumulation via activation of the Nrf2 signaling pathway.

    Matched MeSH terms: Palmitates/toxicity
  2. Abu Bakar MH, Tan JS
    Biomed Pharmacother, 2017 Sep;93:903-912.
    PMID: 28715871 DOI: 10.1016/j.biopha.2017.07.021
    Compelling evidences posited that high level of saturated fatty acid gives rise to mitochondrial dysfunction and inflammation in the development of insulin resistance in skeletal muscle. Celastrol is a pentacyclic triterpenoid derived from the root extracts of Tripterygium wilfordii that possesses potent anti-inflammatory properties in a number of animal models with metabolic diseases. However, the cellular mechanistic action of celastrol in alleviating obesity-induced insulin resistance in skeletal muscle remains largely unknown. Therefore, the present investigation evaluated the attributive properties of celastrol at different concentrations (10, 20, 30 and 40nM) on insulin resistance in C2C12 myotubes evoked by palmitate. We demonstrated that celastrol improved mitochondrial functions through significant enhancement of intracellular ATP content, mitochondrial membrane potential, citrate synthase activity and decrease of mitochondrial superoxide productions. Meanwhile, augmented mitochondrial DNA (mtDNA) content with suppressed DNA oxidative damage were observed following celastrol treatment. Celastrol significantly enhanced fatty acid oxidation rate and increased the level of tricarboxylic acid (TCA) cycle intermediates in palmitate-treated cells. Further analysis revealed that the improvement of glucose uptake activity in palmitate-loaded myotubes was partly mediated by celastrol via activation of PI3K-Akt insulin signaling pathway. Collectively, these findings provided evidence for the first time that the protection from palmitate-mediated insulin resistance in C2C12 myotubes by celastrol is likely associated with the improvement of mitochondrial functions-related metabolic activities.
    Matched MeSH terms: Palmitates/toxicity*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links