Displaying all 3 publications

Abstract:
Sort:
  1. Lim SH, Wu L, Kiew LV, Chung LY, Burgess K, Lee HB
    PLoS One, 2014;9(3):e82934.
    PMID: 24622277 DOI: 10.1371/journal.pone.0082934
    Reprogramming of energy metabolism is pivotal to cancer, so mitochondria are potential targets for anticancer therapy. A prior study has demonstrated the anti-proliferative activity of a new class of mitochondria-targeting rosamines. This present study describes in vitro cytotoxicity of second-generation rosamine analogs, their mode of action, and their in vivo efficacies in a tumor allografted mouse model. Here, we showed that these compounds exhibited potent cytotoxicity (average IC50<0.5 µM), inhibited Complex II and ATP synthase activities of the mitochondrial oxidative phosphorylation pathway and induced loss of mitochondrial transmembrane potential. A NCI-60 cell lines screen further indicated that rosamine analogs 4 and 5 exhibited potent antiproliferative effects with Log10GI50 = -7 (GI50 = 0.1 µM) and were more effective against a colorectal cancer sub-panel than other cell lines. Preliminary in vivo studies on 4T1 murine breast cancer-bearing female BALB/c mice indicated that treatment with analog 5 in a single dosing of 5 mg/kg or a schedule dosing of 3 mg/kg once every 2 days for 6 times (q2d×6) exhibited only minimal induction of tumor growth delay. Our results suggest that rosamine analogs may be further developed as mitochondrial targeting agents. Without a doubt proper strategies need to be devised to enhance tumor uptake of rosamines, i.e. by integration to carrier molecules for better therapeutic outcome.
    Matched MeSH terms: Oxidative Phosphorylation/drug effects*
  2. Toh HT
    Am J Chin Med, 1994;22(3-4):275-84.
    PMID: 7872239
    Heart mitochondria freshly isolated from ginseng treated rats respired higher at ADP-induced, state 3 respiratory rates and with greater respiratory indices. These mitochondria were less susceptible to experimentally-induced functional impairment. Control heart mitochondria incubated with ginseng extract also showed that ginseng prevented mitochondria from incubation induced deterioration with NAD-linked substrates. Comparison of force of contraction of isolated, perfused and electrically paced hearts showed that deterioration of the force of heart contraction was consistently smaller throughout the experiment in hearts from ginseng treated rats. These results indicated that Panax ginseng was able to delay experimentally induced heart mitochondrial impairment and muscle contraction deterioration.
    Matched MeSH terms: Oxidative Phosphorylation/drug effects
  3. Koga Y, Yoshida I, Kimura A, Yoshino M, Yamashita F, Sinniah D
    Pediatr Res, 1987 Aug;22(2):184-7.
    PMID: 3658544
    Margosa oil (MO), a fatty acid-rich extract of the seeds of the neem tree and a reported cause of Reye's syndrome, has been used in the induction of an experimental model of Reye's syndrome in rats. It has been reported that MO causes a decrease in in vivo mitochondrial enzyme activity similar to that seen in Reye's syndrome. We have attempted to uncover some of the biochemical mechanisms of MO's toxicity by examining its effect in vitro on isolated rat liver mitochondria. Male rat liver mitochondria were isolated by centrifugation; oxygen uptake, reduced forms of cytochrome b, c + c1, a + a3, and flavoprotein, intramitochondrial concentrations of acetyl coA, acid-soluble coA, acid-insoluble coA, and ATP content were measured after incubation with and without MO. Our results reveal that MO is a mitochondrial uncoupler. State 4 respiration was increased while the respiratory control ratio was decreased. The intramitochondrial content of ATP was also decreased. There were substantial changes in the reduction of the respiratory chain components after incubation of mitochondria with MO. This decelerative effect on mitochondrial electron transport was alleviated by the addition of coenzyme Q and/or carnitine. These effects of MO on mitochondrial respiration may be due to changes in fatty acid metabolism caused by MO as MO caused a shift in the proportion of acid-soluble or acid-insoluble coA esters. Supplementary therapy with L-carnitine and coenzyme Q may be useful in the management of MO-induced Reye's syndrome.
    Matched MeSH terms: Oxidative Phosphorylation/drug effects
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links