Displaying all 12 publications

Abstract:
Sort:
  1. Pang SC, Voon LK, Chin SF
    Appl Biochem Biotechnol, 2018 Apr;184(4):1142-1154.
    PMID: 28965305 DOI: 10.1007/s12010-017-2616-z
    The conversion of starchy sago (Metroxylon sagu) pith waste (SPW), a lignocellulosic biomass waste, to fermentable sugars under mild conditions had been successfully demonstrated. The optimum depolymerization of SPW was achieved at 2 wt% sample loading which was catalyzed by 100 mM of oxalic acid in the presence of 25 wt% NaCl solution at 110 °C for 3 h. Up to 97% SPW sample was being converted into fermentable sugars with limited formation of by-products after two sequential depolymerization cycles. Both reaction temperature and concentration of oxalic acid were crucial parameters for the depolymerization of SPW which exhibited a high selectivity for the production of glucose over other reducing sugars.
    Matched MeSH terms: Oxalic Acid/chemistry*
  2. Nazaruddin, R., Noor Baiti, A.A., Foo, S.C., Tan, Y.N., Ayob, M.K.
    MyJurnal
    Recent research suggesting the existence of potential source of pectin from roselle calyces. Pectin was successfully extracted from seven different varieties of roselle calyces. Pectin extraction was conducted using hydrochloric acid (HCl, 0.03 N, pH 1.5) or ammonium oxalate (0.25% w/v, pH 4.6) at 85⁰C for 1 h. Chemical characteristics of the HCl- and ammonium oxalate extracted pectin were compared. Results indicated that ammonium oxalate exhibited greater efficiency in pectin extraction than HCl. Highest pectin yield at 18.7% was obtained by ammonium oxalate extraction of roselle calyx variety Acc.6 compared to only 9.77% by HCl extraction. The lowest pectin yield at 11.3% and 5.78% were observed respectively in ammonium oxalate and HCl extractions of roselle calyx variety UKMR-3. Some important characteristics of ammonium oxalate extracted pectin of roselle Acc.6 were 5.98% moisture, 3.81% ash, 4.64% methoxyl content, 42.24% anhydrouronic acid (AUA) and degree of esterification (DE) 60%. This study suggested that the high DE% roselle pectin is an alternative source of pectin for food industry.
    Matched MeSH terms: Oxalic Acid
  3. Hafiz AFA, Keat YW, Ali A
    J Food Sci Technol, 2017 Jun;54(7):2181-2185.
    PMID: 28720977 DOI: 10.1007/s13197-017-2645-1
    The shelf life of rambutan is often limited due to rapid water loss from the spinterns and browning of the pericarp. An integrated approach, which combined hot water treatment (HWT) (56 °C for 1 min), oxalic acid (OA) dip (10% for 10 min) and modified atmosphere packaging (MAP), was used to study their effectiveness on the quality of rambutan during storage (10 °C, 90-95% relative humidity). Significant differences were observed in rambutan quality with the combination of MAP + HWT + OA after 20 days of storage. This treatment combination resulted into better retention of firmness and colour (L and a* values) than in the control. Change in the total soluble solid content was significantly delayed however the titratable acidity showed no significant change in comparison to the control at the end of storage.
    Matched MeSH terms: Oxalic Acid
  4. Norazelina Sah Mohd Ismail, Nazaruddin Ramli, Norziah Mohd Hani, Zainudin Meon
    Sains Malaysiana, 2012;41:41-45.
    The extraction of pectin from dragon fruit (Hylocereus polyrhizus) peels under three different extraction conditions was identified as an alternative source of commercial pectin. In this work, dried alcohol-insoluble residues (AIR) of dragon fruit peels were treated separately with 0.25% ammonium oxalate/oxalic acid at a pH of 4.6 at 85oC; 0.03 M HCl at a pH of 1.5 at 85oC; and de-ionized water at 75oC. The pectin obtained from these methods was compared in terms of yield, physicochemical properties and chemical structure. Fourier Transform Infrared Spectroscopy (FTIR) was used in the identification of dragon fruit pectins. The results showed that the pectin yield (14.96-20.14% based on dry weight), moisture content (11.13-11.33%), ash content (6.88-11.55%), equivalent weight (475.64-713.99), methoxyl content (2.98-4.34%), anhydrouronic acid (45.25-52.45%) and the degree of esterification (31.05-46.96%) varied significantly (p < 0.05) with the various extraction conditions used. Pectin extracted with ammonium oxalate gave the highest yield of pectin, with high purity and low ash content. Based on the value of methoxyl content and the degree of esterification, dragon fruit pectin can be categorized as low-methoxyl pectin.
    Matched MeSH terms: Oxalic Acid
  5. Ahmad MS, Cheng CK, Singh S, Ong HR, Abdullah H, Hong CS, et al.
    J Nanosci Nanotechnol, 2020 09 01;20(9):5916-5927.
    PMID: 32331197 DOI: 10.1166/jnn.2020.18549
    Glycerol electro-oxidation offers a green route to produce the high value added chemicals. Here in, we report the glycerol electro-oxidation over a series of multi walled carbon nano tubes supported monometallic (Pt/CNT and Pd/CNT) and bimetallic (Pt-Pd/CNT) catalysts in alkaline medium. The cyclic voltammetry, linear sweep voltammetry and chronoamperometry measurements were used to evaluate the activity and stability of the catalysts. The Pt-Pd/CNT electrocatalyst exhibited the highest activity in terms of higher current density (129.25 A/m²) and electrochemical surface area (382 m²/g). The glycerol electro-oxidation products formed at a potential of 0.013 V were analyzed systematically by high performance liquid chromatography. Overall, six compounds were found including mesoxalic acid, 1,3-dihydroxyacetone, glyceraldehyde, glyceric acid, tartronic acid and oxalic acid. A highest mesoxalic acid selectivity of 86.42% was obtained for Pt-Pd/CNT catalyst while a maximum tartronic acid selectivity of 50.17% and 46.02% was achieved for Pd/CNT and Pt/CNT respectively. It was found that the introduction of Pd into Pt/CNT lattice facilitated the formation of C3 products in terms of maximum selectivity achieved (86.42%) while the monometallic catalysts (Pd/CNT and Pt/CNT) showed a poor performance in comparison to their counterpart.
    Matched MeSH terms: Oxalic Acid
  6. Ayodele OB
    Sci Rep, 2017 Aug 30;7(1):10008.
    PMID: 28855545 DOI: 10.1038/s41598-017-09706-z
    Achieving high degree of active metal dispersions at the highest possible metal loading and high reducibility of the metal remains a challenge in Fischer Tropsch synthesis (FTS) as well as in hydrogeoxygenation (HDO).This study therefore reports the influence of oxalic acid (OxA) functionalization on the metal dispersion, reducibility and activity of Co supported ZSM-5 catalyst in FTS and HDO of oleic acid into paraffin biofuel. The Brunauer-Emmett-Teller (BET) results showed that cobalt oxalate supported ZSM-5 catalyst (CoOx/ZSM-5) synthesized from the incorporation of freshly prepared cobalt oxalate complex into ZSM-5 displayed increase in surface area, pore volume and average pore size while the nonfunctionalized cobalt supported on ZSM-5 (Co/ZSM-5) catalyst showed reduction in those properties. Furthermore, both XRD and XPS confirmed the presence of Co° formed from the decomposition of CoOx during calcination of CoOx/ZSM-5 under inert atmosphere. The HRTEM showed that Co species average particle sizes were smaller in CoOx/ZSM-5 than in Co/ZSM-5, and in addition, CoOx/ZSM-5 shows a clear higher degree of active metal dispersion. The FTS result showed that at CO conversion over Co/ZSM-5 and CoOx/ZSM-5 catalysts were 74.28% and 94.23% and their selectivity to C5+ HC production were 63.15% and 75.4%, respectively at 4 h TOS. The HDO result also showed that the CoOx/ZSM-5 has higher OA conversion of 92% compared to 59% over Co/ZSM-5. In addition CoOx/ZSM-5 showed higher HDO and isomerization activities compared to Co/ZSM-5.
    Matched MeSH terms: Oxalic Acid
  7. Panhwar QA, Jusop S, Naher UA, Othman R, Razi MI
    ScientificWorldJournal, 2013;2013:272409.
    PMID: 24288473 DOI: 10.1155/2013/272409
    A study was conducted at Universiti Putra Malaysia to determine the effect of phosphate-solubilizing bacteria (PSB) and organic acids (oxalic & malic) on phosphate (P) solubilization from phosphate rock (PR) and growth of aerobic rice. Four rates of each organic acid (0, 10, 20, and 30 mM), and PSB strain (Bacillus sp.) were applied to aerobic rice. Total bacterial populations, amount of P solubilization, P uptake, soil pH, and root morphology were determined. The results of the study showed significantly high P solubilization in PSB with organic acid treatments. Among the two organic acids, oxalic acid was found more effective compared to malic acid. Application of oxalic acid at 20 mM along with PSB16 significantly increased soluble soil P (28.39 mg kg(-1)), plant P uptake (0.78 P pot(-1)), and plant biomass (33.26 mg). Addition of organic acids with PSB and PR had no influence on soil pH during the planting period. A higher bacterial population was found in rhizosphere (8.78 log10 cfu g(-1)) compared to the nonrhizosphere and endosphere regions. The application of organic acids along with PSB enhanced soluble P in the soil solution, improved root growth, and increased plant biomass of aerobic rice seedlings without affecting soil pH.
    Matched MeSH terms: Oxalic Acid/pharmacology*
  8. Yaghtin A, Masoudpanah SM, Hasheminiasari M, Salehi A, Safanama D, Ong CK, et al.
    Molecules, 2020 Aug 17;25(16).
    PMID: 32824503 DOI: 10.3390/molecules25163746
    In this study, Li3V2(PO4)3 (LVP) powders are prepared by a solution synthesis method. The effects of two reducing agents on crystal structure and morphology and electrochemical properties are investigated. Preliminary studies on reducing agents such as oxalic acid and citric acid, are used to reduce the vanadium (V) precursor. The oxalic acid-assisted synthesis induces smaller particles (30 nm) compared with the citric acid-assisted synthesis (70 nm). The LVP powders obtained by the oxalic acid exhibit a higher specific capacity (124 mAh g-1 at 1C) and better cycling performance (122 mAh g-1 following 50 cycles at 1C rate) than those for the citric acid. This is due to their higher electronic conductivity caused by carbon coating and downsizing the particles. The charge-discharge plateaus obtained from cyclic voltammetry are in good agreement with galvanostatic cycling profiles.
    Matched MeSH terms: Oxalic Acid/chemistry*
  9. Cristancho RJ, Hanafi MM, Omar SR, Rafii MY
    Plant Biol (Stuttg), 2011 Mar;13(2):333-42.
    PMID: 21309980 DOI: 10.1111/j.1438-8677.2010.00378.x
    Aluminium (Al) phytotoxicity is an important soil constraint that limits crop yield. The objectives of this study were to investigate how growth, physiology, nutrient content and organic acid concentration is affected by Al, and to assess the degree of Al tolerance in different oil palm progeny (OPP). Four OPPs ['A' (Angola dura × Angola dura), 'B' (Nigerian dura × Nigerian dura), 'C' (Deli dura × AVROS pisifera) and 'D' (Deli dura × Dumpy AVROS pisifera)] were grown in different Al concentrations (0, 100 and 200 μm) in aerated Hoagland solution, pH 4.4, for 80 days. We observed a severe reduction (57.5%) in shoot dry weight, and root tips were reduced by 46.5% in 200 μm Al. In 'B' and 'C', the majority of macro- and micronutrients in plants were reduced significantly by 200 μm Al, with Mg being lowered by more than 50% in roots and shoots. The 200 μm Al treatment resulted in a 56.50% reduction in total leaf area, a 20% reduction in net photosynthesis and a 17% reduction in SPAD chlorophyll value in the third leaf. Root tips (0-5 mm) showed a significant increase in oxalic acid content with increasing Al concentration (∼ 5.86-fold); progeny 'A' had the highest concentration of oxalic acid. There was a significant interaction between Al concentration × OPP on total leaf number, root volume, lateral root length, Mg and K in root and shoot tissues, and Ca and N in shoots. The OPPs could be ranked in their tolerance to Al as: 'A' > 'D' > 'B' > 'C'.
    Matched MeSH terms: Oxalic Acid/analysis
  10. Hong YH, Dublin N, Razack AH, Mohd MA, Husain R
    Urology, 2010 Jun;75(6):1294-8.
    PMID: 19914693 DOI: 10.1016/j.urology.2009.08.061
    OBJECTIVES: To investigate the correlations and agreements between the solute/creatinine ratios from the 24-hour and early morning spot urine samples for metabolic evaluation in stone-formers given the various pitfalls with the 24-hour urinary metabolic evaluation in stone-formers.
    METHODS: 30 urinary stone-formers out of an initial 62 recruited provided a complete 24-hour urine and early morning spot urine samples for metabolic evaluation. Pearson correlation and Bland and Altman Test were used to assess the correlations and agreements.
    RESULTS: Significant correlations were established between the 24-hour urinary solute excretions and the corresponding early morning spot urine solute/creatinine ratios for calcium, magnesium, urate, potassium, oxalate, citrate, and the Differential Gibb's free energy value of calcium oxalate DG(CaOx) values. However, all these solute/creatinine measurements between the 24-hour and early morning spot urine samples were judged to be not within the acceptable limits based on the estimated "limit of agreement" by the Bland and Altman Test of Agreement. Diurnal circadian rhythm and postprandial excretion surge are thought to be responsible for the disagreements.
    CONCLUSIONS: Thus, the early morning spot urine is not suitable to be used interchangeably to replace the 24-hour urine collection in the evaluation of urinary metabolic abnormalities in stone-formers. A good correlation does not translate to an agreement between the 2 measurements.
    Matched MeSH terms: Oxalic Acid/urine
  11. Anang DM, Rusul G, Radu S, Bakar J, Beuchat LR
    J Food Prot, 2006 Aug;69(8):1913-9.
    PMID: 16924917
    Oxalic acid was evaluated as a treatment for reducing populations of naturally occurring microorganisms on raw chicken. Raw chicken breasts were dipped in solutions of oxalic acid (0, 0.5, 1.0, 1.5, and 2.0%, wt/vol) for 10, 20, and 30 min, individually packed in oxygen-permeable polyethylene bags, and stored at 4 degrees C. Total plate counts of aerobic bacteria and populations of Pseudomonas spp. and Enterobacteriaceae on breasts were determined before treatment and after storage for 1, 3, 7, 10, and 14 days. The pH and Hunter L, a, and b values of the breast surface were measured. Total plate counts were ca. 1.5 and 4.0 log CFU/g higher on untreated chicken breasts after storage for 7 and 14 days, respectively, than on breasts treated with 0.5% oxalic acid, regardless of dip time. Differences in counts on chicken breasts treated with water and 1.0 to 2.0% of oxalic acid were greater. Populations of Pseudomonas spp. on chicken breasts treated with 0.5 to 2.0% oxalic acid and stored at 4 degrees C for 1 day were less than 2 log CFU/g (detection limit), compared with 5.14 log CFU/g on untreated breasts. Pseudomonas grew on chicken breasts treated with 0.5% oxalic acid to reach counts not exceeding 3.88 log CFU/g after storage for 14 days. Counts on untreated chicken exceeded 8.83 log CFU/g at 14 days. Treatment with oxalic acid caused similar reductions in Enterobacteriaceae counts. Kocuria rhizophila was the predominant bacterium isolated from treated chicken. Other common bacteria included Escherichia coli and Empedobacter brevis. Treatment with oxalic acid caused a slight darkening in color (decreased Hunter L value), retention of redness (increased Hunter a value), and increase in yellowness (increased Hunter b value). Oxalic acid has potential for use as a sanitizer to reduce populations of spoilage microorganisms naturally occurring on raw chicken, thereby extending chicken shelf life.
    Matched MeSH terms: Oxalic Acid/pharmacology*
  12. Hussein NS, Sadiq SM, Kamaliah MD, Norakmal AW, Gohar MN
    Saudi J Kidney Dis Transpl, 2013 May;24(3):630-7.
    PMID: 23640651
    Urolithiasis is a common disease with increasing incidence and prevalence world-wide, probably more common in industrialized countries. The metabolic evaluation of 24-h urine collection has been considered as part of the management of urinary stone patients. The aim of this study was to evaluate the 24-h urine constituents in stone formers and its relation to demographic data in the northeast part of Peninsular Malaysia. One hundred and six patients were recruited in this study from two hospitals in the same geographical region; 96 patients fulfilled the inclusion criteria and an informed consent was obtained from all subjects. The 24-h urine was collected in sterile bottles with a preservative agent and calcium, oxalate, citrate, uric acid, magnesium and phosphate were tested using commercial kits on a Roche Hitachi 912 chemistry analyzer. The age (mean ± SD) of 96 patients was 56.45 ± 13.43 years and 82.3% of the patients were male while 17.7% were female. The 24-h urine abnormalities were hypercalciuria (14.5%), hyperoxaluria (61.4%), hypocitraturia (57.2%), hyperuricouria (19.7%), hypomagnesuria (59.3%) and hyperphosphaturia (12.5%). Hyperoxaluria (61.4%) was the most common abnormality detected during the analysis of 24-h urine constituents in contradiction to industrial countries, where hypercalciuria was the most common finding. The high frequencies of hypomagnesuria and hypocitraturia reflect the important role of magnesium and citrate in stone formation and their prophylactic role in the treatment of urinary stone disease in the given population.
    Matched MeSH terms: Oxalic Acid/urine
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links