Displaying all 2 publications

Abstract:
Sort:
  1. Lohr V, Genzel Y, Behrendt I, Scharfenberg K, Reichl U
    Vaccine, 2010 Aug 31;28(38):6256-64.
    PMID: 20638458 DOI: 10.1016/j.vaccine.2010.07.004
    An adherently growing MDCK cell line was adapted in a two-step process in a fully defined medium and in suspension. The resulting MDCK.SUS2 cells were subsequently evaluated for their potential as host cells for influenza vaccine production in two lab-scale bioreactors (wave and stirred-tank). Cell concentrations up to 2.3 x 10(6)cells/mL were obtained after 96 h, which is slightly higher than cell concentrations obtained with adherent MDCK cells cultivated on microcarriers (2g/L). Infections with influenza A/PR/8/34 and B/Malaysia resulted in high virus titers (2.90 and 2.75 log HA units/100 microL, respectively). The monitoring of extracellular metabolites, including amino acids, revealed a change in some of the metabolite consumption or release profiles, which indicates changes in metabolism during the adaptation process. Overall, the MDCK.SUS2 cell line represents a new cell substrate for a robust influenza vaccine production in a fully defined process.
    Matched MeSH terms: Orthomyxoviridae/growth & development
  2. Mehrbod P, Ideris A, Omar AR, Hair-Bejo M, Tan SW, Kheiri MT, et al.
    Virol J, 2012;9:44.
    PMID: 22340010 DOI: 10.1186/1743-422X-9-44
    The influenza virus is still one of the most important respiratory risks affecting humans which require effective treatments. In this case, traditional medications are of interest. HESA-A is an active natural biological compound from herbal-marine origin. Previous studies have reported that the therapeutic properties of HESA-A are able to treat psoriasis vulgaris and cancers. However, no antiviral properties have been reported.
    Matched MeSH terms: Orthomyxoviridae/growth & development
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links