Displaying all 13 publications

Abstract:
Sort:
  1. Zhao J, Shi J, Chen X, Lei Y, Tian T, Zhu S, et al.
    Mol Omics, 2024 Mar 25;20(3):192-202.
    PMID: 38224158 DOI: 10.1039/d3mo00232b
    Areca nut (Areca catechu L.) is commonly consumed as a chewing food in the Asian region. However, the investigations into the components of areca nut are limited. In this study, we have developed an approach that combines mass spectrometry with feature-based molecular network to explore the chemical characteristics of the areca nut. In comparison to the conventional method, this technique demonstrates a superior capability in annotating unknown compounds present in areca nut. We annotated a total of 52 compounds, including one potential previously unreported alkaloid, one carbohydrate, and one phenol and confirmed the presence of 7 of them by comparing with commercial standards. The validated method was used to evaluate chemical features of areca nut at different growth stages, annotating 25 compounds as potential biomarkers for distinguishing areca nut growth stages. Therefore, this approach offers a rapid and accurate method for the component analysis of areca nut.
    Matched MeSH terms: Nuts/chemistry
  2. Elouafy Y, El Yadini A, El Moudden H, Harhar H, Alshahrani MM, Awadh AAA, et al.
    Molecules, 2022 Nov 08;27(22).
    PMID: 36431782 DOI: 10.3390/molecules27227681
    The present study investigated and compared the quality and chemical composition of Moroccan walnut (Juglans regia L.) oil. This study used three extraction techniques: cold pressing (CP), soxhlet extraction (SE), and ultrasonic extraction (UE). The findings showed that soxhlet extraction gave a significantly higher oil yield compared to the other techniques used in this work (65.10% with p < 0.05), while cold pressing and ultrasonic extraction gave similar yields: 54.51% and 56.66%, respectively (p > 0.05). Chemical composition analysis was carried out by GC−MS and allowed 11 compounds to be identified, of which the major compound was linoleic acid (C18:2), with a similar percentage (between 57.08% and 57.84%) for the three extractions (p > 0.05). Regarding the carotenoid pigment, the extraction technique significantly affected its content (p < 0.05) with values between 10.11 mg/kg and 14.83 mg/kg. The chlorophyll pigment presented a similar content in both oils extracted by SE and UE (p > 0.05), 0.20 mg/kg and 0.16 mg/kg, respectively, while the lowest content was recorded in the cold-pressed oil with 0.13 mg/kg. Moreover, the analysis of phytosterols in walnut oil revealed significantly different contents (p < 0.05) for the three extraction techniques (between 1168.55 mg/kg and 1306.03 mg/kg). In addition, the analyses of tocopherol composition revealed that γ-tocopherol represented the main tocopherol isomer in all studied oils and the CP technique provided the highest content of total tocopherol with 857.65 mg/kg, followed by SE and UE with contents of 454.97 mg/kg and 146.31 mg/kg, respectively, which were significantly different (p < 0.05). This study presents essential information for producers of nutritional oils and, in particular, walnut oil; this information helps to select the appropriate method to produce walnut oil with the targeted quality properties and chemical compositions for the desired purpose. It also helps to form a scientific basis for further research on this plant in order to provide a vision for the possibility of exploiting these oils in the pharmaceutical, cosmetic, and food fields.
    Matched MeSH terms: Nuts/chemistry
  3. Leong YH, Rosma A, Latiff AA, Izzah AN
    Int J Hyg Environ Health, 2012 Apr;215(3):368-72.
    PMID: 22230243 DOI: 10.1016/j.ijheh.2011.12.005
    Aflatoxins are one of the major risk factors in the multi-factorial etiology of human hepatocellular carcinoma. Therefore, the information on aflatoxins exposure is very important in the intervention planning in order to reduce the dietary intake of aflatoxins, especially among the children. This study investigated the relationship between aflatoxin B(1) (AFB(1)) lysine adduct levers in serum and socio-demographic factors and dietary intake of aflatoxins from nuts and nut products in Penang, Malaysia. A cross-sectional field study was conducted in five districts of Penang. A survey on socio-demographic characteristics was administered to 364 healthy adults from the three main ethnic groups (Malay, Chinese and Indian). A total of 170 blood samples were successfully collected and tested for the level of AFB(1)-lysine adduct. 97% of the samples contained AFB(1)-lysine adduct above the detection limit of 0.4 pg/mg albumin and ranged from 0.20 to 23.16 pg/mg albumin (mean±standard deviation=7.67±4.54 pg/mg albumin; median=7.12 pg/mg albumin). There was no significant association between AFB(1)-lysine adduct levels with gender, district, education level, household number and occupation when these socio-demographic characteristics were examined according to high or low levels of AFB(1)-lysine. However, participants in the age group of 31-50 years were 3.08 times more likely to have high AFB(1) levels compared to those aged between 18 and 30 years (P=0.026). Significant difference (P=0.000) was found among different ethnic groups. Chinese and Indian participants were 3.05 and 2.35 times more likely to have high AFB(1) levels than Malay. The result of AFB(1)-lysine adduct suggested that Penang adult population is likely to be exposed to AFB(1) but at a level of less than that needed to cause direct acute illness or death.
    Matched MeSH terms: Nuts/chemistry
  4. Morton JF
    Basic Life Sci., 1992;59:739-65.
    PMID: 1417698
    Tannins are increasingly recognized as dietary carcinogens and as antinutrients interfering with the system's full use of protein. Nevertheless, certain tannin-rich beverages, masticatories, and folk remedies, long utilized in African, Asiatic, Pacific, and Latin American countries, are now appearing in North American sundry shops and grocery stores. These include guarana (Paullinia cupana HBK.) from Brazil, kola nut (Cola nitida Schott & Endl. and C. acuminata Schott & Endl.) from West Africa, and betel nut (Areca catechu L.) from Malaya. The betel nut, or arecanut, has long been associated with oral and esophageal cancer because of its tannin content and the tannin contributed by the highly astringent cutch from Acacia catechu L. and Uncaria gambir Roxb. and the aromatic, astringent 'pan' (leaves of Piper betel L.) chewed with it. In addition to the constant recreational/social ingestion of these plant materials, they are much consumed as aphrodisiacs and medications. Guarana and kola nut enjoy great popularity in their native lands because they are also rich in caffeine, which serves as a stimulant. Research and popular education on the deleterious effects of excessive tannin intake could do much to reduce the heavy burden of early mortality and health care, especially in developing countries.
    Matched MeSH terms: Nuts/chemistry
  5. Rezk H, Nassef AM, Inayat A, Sayed ET, Shahbaz M, Olabi AG
    Sci Total Environ, 2019 Mar 25;658:1150-1160.
    PMID: 30677979 DOI: 10.1016/j.scitotenv.2018.12.284
    Fossil fuel depletion and the environmental concerns have been under discussion for energy production for many years and finding new and renewable energy sources became a must. Biomass is considered as a net zero CO2 energy source. Gasification of biomass for H2 and syngas production is an attractive process. The main target of this research is to improve the production of hydrogen and syngas from palm kernel shell (PKS) steam gasification through defining the optimal operating parameters' using a modern optimization algorithm. To predict the gaseous outputs, two PKS models were built using fuzzy logic based on the experimental data sets. A radial movement optimizer (RMO) was applied to determine the system's optimal operating parameters. During the optimization process, the decision variables were represented by four different operating parameters. These parameters include; temperature, particle size, CaO/biomass ratio and coal bottom ash (CBA) with their operating ranges of (650-750 °C), (0.5-1 mm), (0.5-2) and wt% (0.02-0.10), respectively. The individual and interactive effects of different combinations were investigated on the production of H2 and syngas yield. The optimized results were compared with experimental data and results obtained from Response Surface Methodology (RSM) reported in literature. The obtained optimal values of the operating parameters through RMO were found 722 °C, 0.92 mm, 1.72 and 0.06 wt% for the temperature, particle size, CaO/biomass ratio and coal bottom ash, respectively. The results showed that syngas production was significantly improved as it reached 65.44 vol% which was better than that obtained in earlier studies.
    Matched MeSH terms: Nuts/chemistry
  6. García JR, Sedran U, Zaini MAA, Zakaria ZA
    Environ Sci Pollut Res Int, 2018 Feb;25(6):5076-5085.
    PMID: 28391459 DOI: 10.1007/s11356-017-8975-8
    Palm oil mill wastes (palm kernel shell (PKS)) were used to prepare activated carbons, which were tested in the removal of colorants from water. The adsorbents were prepared by 1-h impregnation of PKS with ZnCl2 as the activating agent (PKS:ZnCl2 mass ratios of 1:1 and 2:1), followed by carbonization in autogenous atmosphere at 500 and 550 °C during 1 h. The characterization of the activated carbons included textural properties (porosity), surface chemistry (functional groups), and surface morphology. The dye removal performance of the different activated carbons was investigated by means of the uptake of methylene blue (MB) in solutions with various initial concentrations (25-400 mg/L of MB) at 30 °C, using a 0.05-g carbon/50-mL solution relationship. The sample prepared with 1:1 PKS:ZnCl2 and carbonized at 550 °C showed the highest MB adsorption capacity (maximum uptake at the equilibrium, q max = 225.3 mg MB / g adsorbent), resulting from its elevated specific surface area (BET, 1058 m2/g) and microporosity (micropore surface area, 721 m2/g). The kinetic experiments showed that removals over 90% of the equilibrium adsorptions were achieved after 4-h contact time in all the cases. The study showed that palm oil mill waste biomass could be used in the preparation of adsorbents efficient in the removal of colorants in wastewaters.
    Matched MeSH terms: Nuts/chemistry
  7. Zhang Y, He Y, Yuan L, Shi J, Zhao J, Tan C, et al.
    Phytomedicine, 2024 Sep;132:155838.
    PMID: 38964153 DOI: 10.1016/j.phymed.2024.155838
    BACKGROUND: Areca nut polyphenols (AP) that extracted from areca nut, have been demonstrated for their potential of anti-fatigue effects. However, the underlying mechanisms for the anti-fatigue properties of AP has not been fully elucidated to date. Previous studies have predominantly concentrated on single aspects, such as antioxidation and anti-inflammation, yet have lacked comprehensive multi-dimensional analyses.

    PURPOSE: To explore the underlying mechanism of AP in exerting anti-fatigue effects.

    METHODS: In this study, we developed a chronic sleep deprivation-induced fatigue model and used physiological, hematological, and biochemical indicators to evaluate the anti- fatigue efficacy of AP. Additionally, a multi-omics approach was employed to reveal the anti-fatigue mechanisms of AP from the perspective of microbiome, metabolome, and proteome.

    RESULTS: The detection of physiology, hematology and biochemistry index indicated that AP markedly alleviate mice fatigue state induced by sleep deprivation. The 16S rRNA sequencing showed the AP promoted the abundance of probiotics (Odoribacter, Dubosiella, Marvinbryantia, and Eubacterium) and suppressed harmful bacteria (Ruminococcus). On the other hand, AP was found to regulate the expression of colonic proteins, such as increases of adenosine triphosphate (ATP) synthesis and mitochondrial function related proteins, including ATP5A1, ATP5O, ATP5L, ATP5H, NDUFA, NDUFB, NDUFS, and NDUFV. Serum metabolomic analysis revealed AP upregulated the levels of anti-fatigue amino acids, such as taurine, leucine, arginine, glutamine, lysine, and l-proline. Hepatic proteins express levels, especially tricarboxylic acid (TCA) cycle (CS, SDHB, MDH2, and DLST) and redox-related proteins (SOD1, SOD2, GPX4, and PRDX3), were significantly recovered by AP administration. Spearman correlation analysis uncovered the strong correlation between microbiome, metabolome and proteome, suggesting the anti-fatigue effects of AP is attribute to the energy homeostasis and redox balance through gut-liver axis.

    CONCLUSION: AP increased colonic ATP production and improve mitochondrial function by regulating gut microbiota, and further upregulated anti-fatigue amino acid levels in the blood. Based on the gut-liver axis, AP upregulated the hepatic tricarboxylic acid cycle and oxidoreductase-related protein expression, regulating energy homeostasis and redox balance, and ultimately exerting anti-fatigue effects. This study provides insights into the anti-fatigue mechanisms of AP, highlighting its potential as a therapeutic agent.

    Matched MeSH terms: Nuts/chemistry
  8. Marina AM, Man YB, Nazimah SA, Amin I
    Int J Food Sci Nutr, 2009;60 Suppl 2:114-23.
    PMID: 19115123 DOI: 10.1080/09637480802549127
    The antioxidant properties of virgin coconut oil produced through chilling and fermentation were investigated and compared with refined, bleached and deodorized coconut oil. Virgin coconut oil showed better antioxidant capacity than refined, bleached and deodorized coconut oil. The virgin coconut oil produced through the fermentation method had the strongest scavenging effect on 1,1-diphenyl-2-picrylhydrazyl and the highest antioxidant activity based on the beta-carotene-linoleate bleaching method. However, virgin coconut oil obtained through the chilling method had the highest reducing power. The major phenolic acids detected were ferulic acid and p-coumaric acid. Very high correlations were found between the total phenolic content and scavenging activity (r=0.91), and between the total phenolic content and reducing power (r=0.96). There was also a high correlation between total phenolic acids and beta-carotene bleaching activity. The study indicated that the contribution of antioxidant capacity in virgin coconut oil could be due to phenolic compounds.
    Matched MeSH terms: Nuts/chemistry*
  9. Chang AS, Yeong BY, Koh WP
    Nutr Rev, 2010 Apr;68(4):246-52.
    PMID: 20416020 DOI: 10.1111/j.1753-4887.2010.00283.x
    Reported here is a summary of the proceedings of the Symposium on Plant Polyphenols: Nutrition, Health and Innovations, which was cosponsored by the Southeast Asia Region branch of the International Life Sciences Institute and the Nutrition Society of Malaysia in Kuala Lumpur, Malaysia, June 22-23, 2009. The symposium provided a timely update of research regarding the protective effects of polyphenols in chronic diseases, such as cardiovascular disease and cancer, as well as the development of innovative polyphenol-containing food products with enhanced nutritive and health properties. Presentations covered polyphenols from a wide range of food sources such as tea, coffee, nuts and seeds, cocoa and chocolate, soy, and Asian fruits, vegetables, and spices. The symposium was attended by a large and diverse group of nutritionists, dietitians, researchers and allied health professionals, as well as management, research and development, and marketing personnel from the food and beverage industry. Their enthusiastic participation was a testament to the increasing awareness and interest in polyphenols in the prevention and control of chronic diseases. Presented here are some of the highlights and important information from the symposium.
    Matched MeSH terms: Nuts/chemistry
  10. Bharathithasan M, Ravindran DR, Rajendran D, Chun SK, Abbas SA, Sugathan S, et al.
    PLoS One, 2021;16(11):e0260281.
    PMID: 34843539 DOI: 10.1371/journal.pone.0260281
    BACKGROUND: There is a growing need to use green alternative larvicidal control for Aedes larvae compared to chemical insecticides. Substantial reliance on chemical insecticides caused insecticide resistance in mosquito populations. Thus, research for alternate chemical compounds from natural products is necessary to control Aedes larvae. This study explores the analysis of chemical compositions from Areca catechu nut as a potential larvicide for Aedes (Diptera: Culicidae).

    METHODS: The Areca catechu nut collected from Ipoh, Perak, Malaysia was grounded into powder and used for Soxhlet extraction. The chemical analysis of the extracts and their structures were identified using the GCMS-QP2010 Ultra (Shimadzu) system. National Institute of Standards and Technology (NIST) Chemistry WebBook, Standard Reference Database 69 (https://webbook.nist.gov/chemistry/) and PubChem (https://pubchem.ncbi.nlm.nih.gov/), the two databases used to retrieve the synonyms, molecular formula, molecular weight, and 2-dimensional (2D) structure of chemical compounds. Next, following WHO procedures for larval bioassays, the extracts were used to asses larvicidal activity against early 4th instar larvae of Aedes aegypti and Aedes albopictus.

    RESULTS: The larvicidal activities were observed against early 4th stage larvae with different concentrations in the range from 200 mg/L to 1600 mg/L. The LC50 and LC95 of Aedes aegypti were 621 mg/L and 2264 mg/L respectively; whereas the LC50 and LC95 of Aedes albopictus were 636 mg/L and 2268 mg/L respectively. Mortality was not observed in the non-target organism test. The analysis using gas chromatography and mass spectrometer recovered several chemical compounds such as Arecaidine, Dodecanoic acid, Methyl tetradecanoate, Tetradecanoic acid , and n-Hexadecanoic acid bioactive components. These chemical constituents were used as additive formulations in pesticides, pest control, insect repellent, and insecticidal agents.

    CONCLUSIONS: Our study showed significant outcomes from the extract of Areca catechu nut and it deserves further investigation in relation to chemical components and larvicidal actions between different species of Aedes mosquitoes. Even though all these findings are fundamental, it may have some interesting potentials to be developed as natural bio-larvicidal products.

    Matched MeSH terms: Nuts/chemistry*
  11. Sazwi NN, Nalina T, Abdul Rahim ZH
    PMID: 24330738 DOI: 10.1186/1472-6882-13-351
    Betel quid chewing is a popular habit in Southeast Asia. It is believed that chewing betel quid could reduce stress, strengthen teeth and maintain oral hygiene. The aim of this study was to investigate the antioxidant and cytoprotective activities of each of the ingredients of betel quid and compared with betel quid itself (with and without calcium hydroxide). The correlation of their cytoprotective and antioxidant activities with phenolic content was also determined.
    Matched MeSH terms: Nuts/chemistry
  12. Al-Tayar BA, Ahmad A, Yusoff ME, Abdullah SF, Mohamad NK, Md Hashim SN, et al.
    Asian Pac J Cancer Prev, 2020 Apr 01;21(4):1005-1009.
    PMID: 32334462 DOI: 10.31557/APJCP.2020.21.4.1005
    BACKGROUND: Betel quid chewing is more common among the older generation in rural areas of Malaysia. Oral cancer in Asia has been associated with the habit of chewing betel quid and areca nut.

    OBJECTIVE:   This study aims to investigate the cytotoxic effects of betel quid and areca nut extracts on the fibroblast (L929), mouth-ordinary-epithelium 1 (MOE1) and oral squamous cell carcinoma (HSC-2) cell lines.

    METHODS: L929, MOE1 and HSC-2 cells were treated with 0.1, 0.2 and 0.4 g/ml of betel quid and areca nut extracts for 24, 48 and 72 h. MTT assay was performed to assess the cell viability.

    RESULTS: Both extracts, regardless of concentration, significantly reduced the cell viability of L929 compared with the control (P<0.05). Cell viability of MOE1 was significantly enhanced by all betel quid concentrations compared with the control (P<0.05). By contrast, 0.4 g/ml of areca nut extract significantly reduced the cell viability of MOE1 at 48 and 72 h of incubation. Cell viability of HSC-2 was significantly lowered by all areca nut extracts, but 0.4 g/ml of betel quid significantly increased the cell viability of HSC-2 (P<0.05).

    CONCLUSION: Areca nut extract is cytotoxic to L929 and HSC-2, whereas the lower concentrations of areca nut extract significantly increased the cell viability of MOE1 compared to the higher concentration and control group. Although betel quid extract is cytotoxic to L929, the same effect is not observed in MOE1 and HSC-2 cell lines. Further investigations are needed to clarify the mechanism of action.
    .

    Matched MeSH terms: Nuts/chemistry
  13. Gunasekaran R, Shaker MR, Mohd-Zin SW, Abdullah A, Ahmad-Annuar A, Abdul-Aziz NM
    BMC Complement Altern Med, 2017 Jan 28;17(1):79.
    PMID: 28129764 DOI: 10.1186/s12906-017-1600-z
    Coconut oil is commonly used as herbal medicine worldwide. There is limited information regarding its effects on the developing embryo and infant growth.
    Matched MeSH terms: Nuts/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links