The shrimp paste called belacan is a traditional umami taste condiment extensively used in Malaysia that is rich in glutamate and 5'-nucleotides. The aim of this study was to determine the concentration of glutamate and 5'-nucleotides of various types of foods prepared with belacan and to measure their sensory attributes. The concentration of free glutamic acid found in different brands of belacan was 180-530mg/100g and in local dishes 601-4207mg/100g. The total amount of 5'-nucleotides in belacan samples ranged from 0.85 to 42.25μg/g. A Quantitative Descriptive Analysis (QDA) using a list of 17 sensory attributes showed a good correlation between belacan concentration in the final food and a range of positive sensory attributes, except for bitter, sweet, sour taste and astringency. Belacan also contains bitter, sweet and sour compounds that change the positive attributes of belacan at higher concentrations. The highest aroma attributes were linked to nasi goreng belacan (belacan fried rice) while the highest flavour attributes were found in sambal belacan. There was a 32 folds significant increase of umami attributes with the addition of belacan to final foods. The optimum amount of belacan was 0.45% for asam pedas (tamarind flavoured dish with belacan), 18% for sambal belacan (chilli belacan), 1.5-2.5% for kangkong goreng belacan (stir fried water convolous with belacan), and 2% for nasi goreng belacan.
The influence of temperature-time combinations on non-volatile compound and taste traits of beef semitendinosus muscles tested by the electronic tongue was studied. Single-stage sous-vide at 60 and 70 °C (6 and 12 h), and two-stage sous-vide that sequentially cooked at 45 °C (3 h) and 60 °C (either 3 or 9 h) were compared with traditional cooking at 70 °C (30 min). Umami was better explained in the given model of partial least squares regression than astringency, sourness, saltiness, bitterness, and richness. Sous-vide at 70 °C for 12 h characterized the most umami, likely adenosine-5'-monophosphate (AMP) and guanosine-5'-monophosphate (GMP) as significant contributors. Two-stage sous-vide projected higher histidine, leucine, inosine, and hypoxanthine with the astringent and sour taste significant after 6 and 12 h cooking, respectively. Equivalent umami concentration (EUC) between umami amino acids and umami nucleotides showed a strong relationship to umami taste assessed by the electronic tongue.