Displaying publications 1 - 20 of 23 in total

Abstract:
Sort:
  1. Han LM, Haron Z, Yahya K, Bakar SA, Dimon MN
    PLoS One, 2015;10(4):e0120667.
    PMID: 25875019 DOI: 10.1371/journal.pone.0120667
    Strategic noise mapping provides important information for noise impact assessment and noise abatement. However, producing reliable strategic noise mapping in a dynamic, complex working environment is difficult. This study proposes the implementation of the random walk approach as a new stochastic technique to simulate noise mapping and to predict the noise exposure level in a workplace. A stochastic simulation framework and software, namely RW-eNMS, were developed to facilitate the random walk approach in noise mapping prediction. This framework considers the randomness and complexity of machinery operation and noise emission levels. Also, it assesses the impact of noise on the workers and the surrounding environment. For data validation, three case studies were conducted to check the accuracy of the prediction data and to determine the efficiency and effectiveness of this approach. The results showed high accuracy of prediction results together with a majority of absolute differences of less than 2 dBA; also, the predicted noise doses were mostly in the range of measurement. Therefore, the random walk approach was effective in dealing with environmental noises. It could predict strategic noise mapping to facilitate noise monitoring and noise control in the workplaces.
    Matched MeSH terms: Noise, Occupational*
  2. Abdul Rahim KA, Jewaratnam J, Che Hassan CR
    Int J Environ Res Public Health, 2022 Nov 27;19(23).
    PMID: 36497858 DOI: 10.3390/ijerph192315783
    The use of various machines, equipment and power tools at TVET Institute causes the institute's environment to be exposed to noise hazards that are similar to the industry. However, not much data has been published regarding noise exposure at TVET institutes. This study was carried out to document the noise exposure of work activities training in public TVET institutes in Malaysia that implement skill training programs in metal fabrication, furniture manufacturing and automotive maintenance. The identification of excessive noise, task-based noise exposure monitoring and source measurement was conducted. The noise contribution from each work activity to the daily A-weighted noise exposure level and sound pressure level emitted by machines and equipment was documented. The findings of this study recorded 20 activities with task-based noise contribution to the daily A-weighted noise exposure level between 75.3 dB and 95 dB. Based on the findings, the training environment at the TVET institutes has a risk of operating with excessive noise. The documented data can be used in planning the implementation of suitable noise control measures in TVET institutes.
    Matched MeSH terms: Noise, Occupational*
  3. Mohd Rizal Hamid, Ahmad Faruq Mohamad Rosli, Manokaran, Kesavan, Siti Shafiqa Shamira Hashin, Nik Mohd Dzarrin Ghifari Azmy, Baba Md Deros, et al.
    MyJurnal
    Awareness of occupational noise and its effects is growing. At No. 11 squadron base, Sukhoi jet was identified as the main culprit of occupational noise that affects not just the employees of the base but also civilian people in the surrounding area. The objective of the study is to identify the noise level produced by Sukhoi two-engines jet during maintenance operations. Investigations were carried out using Bruel & Kjaer 2250 sound level meter hand-analyser. Measurements were performed directly under the Sukhoi jet body and then 10 metres, 50 metres, 100 metres, 1000 metres and 1500 metres away. The jet engines could operate at two levels, at 72% RPM and at 85% RPM. The civilians are only exposed to its noise from more than 1000 metres away. The results from this study are analysed and noise mapping and noise contouring are produced which give the level of noise exposure. The maximum noise is recorded t 122dB(A) and the minimum is at 60dB(A). The farther the noise from the jet is measured, the lower the values recorded. From the noise mapping, the effects of noise exposures on both the employees at the base and the civilian at the neighbouring surrounding could be identified. Even though the exposures are only for 5-10 minutes, it is still considered as a threat
    Matched MeSH terms: Noise, Occupational
  4. Zakaria MN, Abdul Wahab NA, Awang MA
    Noise Health, 2017 12 2;19(87):112-113.
    PMID: 29192621 DOI: 10.4103/nah.NAH_2_17
    Matched MeSH terms: Noise, Occupational*
  5. Mallick Z, Badruddin IA, Khaleed Hussain MT, Salman Ahmed NJ, Kanesan J
    Noise Health, 2009 Apr-Jun;11(43):98-102.
    PMID: 19414929 DOI: 10.4103/1463-1741.50694
    Over the last few years, interaction of humans with noisy power-driven agricultural tools and its possible adverse after effects have been realized. Grass-trimmer engine is the primary source of noise and the use of motorized cutter, spinning at high speed, is the secondary source of noise to which operators are exposed. In the present study, investigation was carried out to determine the effect of two types of grass-trimming machine engines (SUM 328 SE and BG 328) noise on the operators in real working environment. It was found that BG-328 and SUM-328 SE produced high levels of noise, of the order of 100 and 105 dB(A), respectively, to which operators are exposed while working. It was also observed that situation aggravates when a number of operators simultaneously operate resulting in still higher levels of noise. Operators should be separated 15 meters from each other in order to avoid the combined level of noise exposure while working with these machines. It was found that SPL, of the grass-trimmer machine engines (BG-328 and SUM-328 SE), were higher than the limit of noise recommended by ISO, NIOSH, and OSHA for an 8-hour workday. Such a high level of noise exposure may cause physiological and psychological problems to the operators in long run.
    Matched MeSH terms: Noise, Occupational*
  6. Ismail AF, Daud A, Ismail Z, Abdullah B
    Oman Med J, 2013 Sep;28(5):331-6.
    PMID: 24044059 DOI: 10.5001/omj.2013.96
    Noise is known to be one of the environmental and occupational hazards listed in the Factory and Machinery Act 1967. Quarries with loud deafening sounds from trucks and machineries pose the risk of noise-induced hearing loss to workers. This study was designed to assess the knowledge, attitude and practice towards noise-induced hearing loss and to determine the prevalence of noise-induced hearing loss and its associated factors among quarry workers in a north-eastern state of Malaysia.
    Matched MeSH terms: Noise, Occupational
  7. Yuen FK
    Noise Health, 2014 Nov-Dec;16(73):427-36.
    PMID: 25387540 DOI: 10.4103/1463-1741.144429
    Environmental noise remains a complex and fragmented interplay between industrialization, population growth, technological developments, and the living environment. Next to the circulatory diseases and cancer, noise pollution has been cited as the third epidemic cause of psychological and physiological disorders internationally. A reliable and firm relationship between the cumulative health implications with the traffic annoyance and occupational noise has been established. This agenda has called for an integrated, coordinated, and participatory approach to the reliable protection of noise interference. Despite several fragmented policies, legislation and global efforts have been addressed; the noise pollution complaints have been traditionally neglected in developing countries, especially in Malaysia. This paper was undertaken to postulate an initial platform to address the dynamic pressures, gigantic challenges, and tremendous impacts of noise pollution scenario in Malaysia. The emphasis is speculated on the traffic interference and assessment of industrial and occupational noise. The fundamental importance of noise monitoring and modeling is proposed. Additionally, the confronting conservation program and control measure for noise pollution control are laconically elucidated.
    Matched MeSH terms: Noise, Occupational/adverse effects; Noise, Occupational/legislation & jurisprudence; Noise, Occupational/prevention & control*
  8. Noraidah Ismail, Sarah Rahmat
    MyJurnal
    This paper aims to synthesize available literature on occupational noise in Malaysia and to relate this to the current noise management practices and control. The review focuses on several main
    scopes; i) history of occupational noise management in Malaysia; ii) legislative developments and legal precedents of occupational noise in Malaysia ; and iii) the hearing conservation programs (HCP) and hearing loss prevention programs (HLPP). Narrative review and synthesis. Related publications and references were identified through several ways: i) by structured searches in PubMed, Google scholar, Web of Knowledge and Science Direct using the combinations of ‘occupational noise’, ‘noise induced hearing loss; ‘hearing’, ‘knowledge’, awareness’, ‘hearing conservation program’, ‘hearing protection devices’ as key words ii) by inspecting the reference lists of relevant articles. The number of publications within the audiology which address this topic, is rather limited. All the above mentioned scopes were discussed and synthesis of literature from other related fields such as medical, health and occupational safety and health were also referred to facilitate the discussion. This paper concludes that there are an emerging trend for the studies of occupational noise Malaysia in the literature. However, the effectiveness of HCP in Malaysia, and to what extent it is accepted and being implemented is yet to be investigated.
    Matched MeSH terms: Noise, Occupational
  9. Ahmad Syazrin Muhamad
    MyJurnal
    Sound is one of the source of energy generated by vibration and is carried through the air in a form of pressure waves (Frederick, 1975). This pressure waves consist of pulsation or vibration of molecules of an elastic medium such as gas, liquid and even solid (Gerber, 1974). Due to its nature, sound can be irritating when it is excessive. The excessive amount of sound is called noise. Exposure to noise is common to the workers working at the industry. This can lead to hearing loss. Hearing loss is one of the most common health problems in the industrialized world. Working activities have been related to noise exposure due to increase use of machine that generates sounds. Many workers throughout the world experience hazardous noise exposure which is ≥ 85 decibels (dB) (Seter, 1998). Based on the previous study in the European region, most of the employers had difficulties to compensate workers diagnosed with hearing loss or hearing impairment cause by the working nature. (Rachiotis et al., 2006). According to European Survey on Working Conditions, about 7% of the workers considered that their work affects their health in the form of hearing disorders. Occupational risk factors for hearing loss include occupational noise, whole body vibration, work-related diseases and exposure to chemical. In this report, we specified in the noise exposure level of the workers.
    Matched MeSH terms: Noise, Occupational
  10. Siti Norhafiza Abd Razak, Nurul Hazwani Mohd Yusoff, Farah Hana Mukhtar, Norsehah Abdul Karim, Noor Hasyimah Abu Rahim
    MyJurnal
    Working for a minimum of 8 hours, 6 days a week might have exposed the workers of public transportation to
    high noise risks. However, occupational exposures in their workplace have not been adequately characterized and
    identified. Assessment of occupational noise exposure among workers at five public transportation stations was made
    using Sound Level Meter and through questionnaire survey. The data obtained was combined to estimate the work
    shift exposure level and health impacts to the workers by using statistical analysis. The respondents participated in the
    survey to identify the symptoms of noise-induced hearing loss and other health-related problems. Results of the study
    indicated that occupational noise exposure among workers for Mean Continuous Equivalent Level, Leq= 76.17 dB(A)
    presents small risks of developing a hearing disability. Some of the workers show symptoms of noise-induced hearing
    loss and are annoyed by the sources of noise present at the public transportation.
    Matched MeSH terms: Noise, Occupational
  11. Bin WS, Richardson S, Yeow PH
    Int J Occup Saf Ergon, 2010;16(3):345-56.
    PMID: 20828490
    The study aimed to conduct an ergonomic intervention on a conventional line (CL) in a semiconductor factory in Malaysia, an industrially developing country (IDC), to improve workers' occupational health and safety (OHS). Low-cost and simple (LCS) ergonomics methods were used (suitable for IDCs), e.g., subjective assessment, direct observation, use of archival data and assessment of noise. It was found that workers were facing noise irritation, neck and back pains and headache in the various processes in the CL. LCS ergonomic interventions to rectify the problems included installing noise insulating covers, providing earplugs, installing elevated platforms, slanting visual display terminals and installing extra exhaust fans. The interventions cost less than 3 000 USD but they significantly improved workers' OHS, which directly correlated with an improvement in working conditions and job satisfaction. The findings are useful in solving OHS problems in electronics industries in IDCs as they share similar manufacturing processes, problems and limitations.
    Matched MeSH terms: Noise, Occupational/prevention & control
  12. Rahma MS, Mustafa BE, Razali A, Shamsuddin N, Althunibat OY
    Noise Health, 2013 Nov-Dec;15(67):375-8.
    PMID: 24231415 DOI: 10.4103/1463-1741.121223
    Several epidemiologic studies have reported that exposure to noise is associated with cardiovascular disease. The increased body weight is often associated with metabolic as well as increased blood pressure. The aim of this study is to investigate the correlation between the elevation of blood pressure and serum leptin hormones due to the effects of noise in the work place. A total of 80 volunteer males where included in this study with an age range between of 20 and 45 years, they were divided in two groups equally, the 1 st group were exposed to noise in the workplace while the 2 nd group were not. The individual noise exposure was determined by using a sound level meter. The range of noise was 80-100 dBA. Body Mass Index was also taken for each individual by a standard measure, blood pressure was measured by OMRON sphygmomanometer and serum leptin was measured through venous blood sample analysis enzyme linked immunosorbent assay. Spearman rank order correlation was used to examine the correlations between Blood pressure value (Systolic, Diastolic) and Leptin. All the relationships between parameters showed a positive correlation. Systolic and diastolic blood pressure values had a significant correlation to leptin hormone level in comparison to the control. There was a significant relation between leptin and blood pressure. leptin effects on the sympathetic nervous system may provide a partial explanation. Therefore, Leptin might have diverse cardiovascular actions.
    Matched MeSH terms: Noise, Occupational/adverse effects*
  13. Manakandan SK, Rosnah I, Mohd Ridhuan J, Priya R
    Med J Malaysia, 2017 08;72(4):228-235.
    PMID: 28889134 MyJurnal
    BACKGROUND: The most crucial step in forming a set of survey questionnaire is deciding the appropriate items in a construct. Retaining irrelevant items and removing important items will certainly mislead the direction of a particular study. This article demonstrates Fuzzy Delphi method as one of the scientific analysis technique to consolidate consensus agreement within a panel of experts pertaining to each item's appropriateness. This method reduces the ambiguity, diversity, and discrepancy of the opinions among the experts hence enhances the quality of the selected items. The main purpose of this study was to obtain experts' consensus on the suitability of the preselected items on the questionnaire.

    METHODS: The panel consists of sixteen experts from the Occupational and Environmental Health Unit of Ministry of Health, Vector-borne Disease Control Unit of Ministry of Health and Occupational and Safety Health Unit of both public and private universities. A set of questionnaires related to noise and chemical exposure were compiled based on the literature search. There was a total of six constructs with 60 items in which three constructs for knowledge, attitude, and practice of noise exposure and three constructs for knowledge, attitude, and practice of chemical exposure. The validation process replicated recent Fuzzy Delphi method that using a concept of Triangular Fuzzy Numbers and Defuzzification process.

    RESULTS: A 100% response rate was obtained from all the sixteen experts with an average Likert scoring of four to five. Post FDM analysis, the first prerequisite was fulfilled with a threshold value (d) ≤ 0.2, hence all the six constructs were accepted. For the second prerequisite, three items (21%) from noise-attitude construct and four items (40%) from chemical-practice construct had expert consensus lesser than 75%, which giving rise to about 12% from the total items in the questionnaire. The third prerequisite was used to rank the items within the constructs by calculating the average fuzzy numbers. The seven items which did not fulfill the second prerequisite similarly had lower ranks during the analysis, therefore those items were discarded from the final draft.

    CONCLUSION: Post FDM analysis, the experts' consensus on the suitability of the pre-selected items on the questionnaire set were obtained, hence it is now ready for further construct validation process.

    Matched MeSH terms: Noise, Occupational/adverse effects
  14. Manivasagam, Dayanath
    MyJurnal
    The Department of Occupational Safety and Health Malaysia (DOSH) is the authority responsible to safeguard the occupational safety, health and welfare of workers in Malaysia. Occupational noise-related hearing disorders are the leading type of occupational diseases recorded by DOSH every year. Occupational Health Doctor (OHD) is a competency recognized by DOSH and their scope of duties in industries is currently confined to conduct medical surveillance for workers with hazardous chemical exposure and confined space medical fitness examination. The duties of OHD are good to be expanded by empowering more of their roles in industrial activities involving other legislations under DOSH. The noise exposure regulation under the Factories and Machinery Act (FMA) 1967 has been governing the worker’s exposure to hazardous industrial noise and preventing noise-induced hearing loss (NIHL) since 1989. However, the provisions of the regulation need to be strengthened in some essential medical elements of the Hearing Conservation Programme (HCP) for a comprehensive prevention of NIHL at the workplace. Recently enacted Occupational Safety and Health (Noise Exposure) Regulations 2019 offer a wider coverage of workers in ten sectors of industries applicable under the Occupational Safety and Health Act (OSHA) 1994. The current regulatory requirements for management of workplace noise have many improvements compared to the existing law. Enhancement in the medical requirements of industrial audiometry is made prominent by involving OHDs to interpret audiograms and conduct medical examination for workers. The reporting of occupational noise-related hearing disorders to DOSH is outlined better in the new regulation. The occurrence of NIHL and other related hearing disorders are expected to reduce eventually after the introduction of Occupational Safety and Health (Noise Exposure) Regulations 2019. The OHDs will play a pivotal role in industrial audiometry and prevention of hearing disorders among the working population.
    Matched MeSH terms: Noise, Occupational
  15. Asaritaminaziah binti Hisam, Siti Marwanis binti Anua
    MyJurnal
    Workers who are exposed to high noise level were at risk of noise-induced hearing loss (NIHL). This crosssectional study was conducted to investigate the noise exposure level and hearing symptoms among workers exposed to noise in a teaching hospital. Utilising convenience sampling method, 20 laundry workers and 17 mechanical cutters were recruited into this study. Noise exposure levels were measured using noise dosimeter for 8 hours and information on hearing symptoms were gathered using a modified questionnaire adopted from the American Speech Language Hearing Association (ASHA). A significantly higher mean noise level (85±2 dB(A)) was reported among mechanical cutters as compared to laundry workers (80±3 dB(A)), p=0.001 although the former had shorter duration of noise exposure (20±3 hours per week vs. 28±12 hours per week). Fourteen (70%) laundry workers and six (35%) mechanical cutters had reported having hearing problem in noisy background. Higher proportion of laundry workers (n=8, 57%) had reported hearing symptoms compared to mechanical cutters (n=6, 43%) and longer work years was found to be significantly associated with hearing symptoms (p=0.049). There is a need of appropriate education and training on noise exposure, NIHL and hearing protection devices usage in the workplaces
    Matched MeSH terms: Noise, Occupational
  16. Thomas N, Mariah AN, Fuad A, Kuljit S, Philip R
    Med J Malaysia, 2007 Jun;62(2):152-5.
    PMID: 18705450 MyJurnal
    Thirty-two points in Kuala Lumpur were selected where traffic personnel were on duty. Sound level readings were taken three times a day. Generally, the traffic noise levels were between 75 dBA to 85 dBA. The maximum sound level recorded was 108.2 dBA. Noise emitted by traffic equipment and vehicles were up to 133 dBA. Results of audiometric tests revealed that out of 30 who were tested, 24 or 80% were positive for noise-induced hearing loss. A questionnaire survey revealed a lack of knowledge on occupational safety and personal protective equipment.
    Matched MeSH terms: Noise, Occupational/adverse effects*
  17. Aziz SA, Nuawi MZ, Nor MJ
    J Occup Health, 2015;57(6):513-20.
    PMID: 26269278 DOI: 10.1539/joh.14-0206-OA
    OBJECTIVE: The objective of this study was to present a new method for determination of hand-arm vibration (HAV) in Malaysian Army (MA) three-tonne truck steering wheels based on changes in vehicle speed using regression model and the statistical analysis method known as Integrated Kurtosis-Based Algorithm for Z-Notch Filter Technique Vibro (I-kaz Vibro).

    METHODOLOGY: The test was conducted for two different road conditions, tarmac and dirt roads. HAV exposure was measured using a Brüel & Kjær Type 3649 vibration analyzer, which is capable of recording HAV exposures from steering wheels. The data was analyzed using I-kaz Vibro to determine the HAV values in relation to varying speeds of a truck and to determine the degree of data scattering for HAV data signals.

    RESULTS: Based on the results obtained, HAV experienced by drivers can be determined using the daily vibration exposure A(8), I-kaz Vibro coefficient (Ƶ(v)(∞)), and the I-kaz Vibro display. The I-kaz Vibro displays also showed greater scatterings, indicating that the values of Ƶ(v)(∞) and A(8) were increasing. Prediction of HAV exposure was done using the developed regression model and graphical representations of Ƶ(v)(∞). The results of the regression model showed that Ƶ(v)(∞) increased when the vehicle speed and HAV exposure increased.

    DISCUSSION: For model validation, predicted and measured noise exposures were compared, and high coefficient of correlation (R(2)) values were obtained, indicating that good agreement was obtained between them. By using the developed regression model, we can easily predict HAV exposure from steering wheels for HAV exposure monitoring.

    Matched MeSH terms: Noise, Occupational/statistics & numerical data
  18. Guest H, Dewey RS, Plack CJ, Couth S, Prendergast G, Bakay W, et al.
    Trends Hear, 2018;22:2331216518803213.
    PMID: 30295145 DOI: 10.1177/2331216518803213
    Lifetime noise exposure is generally quantified by self-report. The accuracy of retrospective self-report is limited by respondent recall but is also bound to be influenced by reporting procedures. Such procedures are of variable quality in current measures of lifetime noise exposure, and off-the-shelf instruments are not readily available. The Noise Exposure Structured Interview (NESI) represents an attempt to draw together some of the stronger elements of existing procedures and to provide solutions to their outstanding limitations. Reporting is not restricted to prespecified exposure activities and instead encompasses all activities that the respondent has experienced as noisy (defined based on sound level estimated from vocal effort). Changing exposure habits over time are reported by dividing the lifespan into discrete periods in which exposure habits were approximately stable, with life milestones used to aid recall. Exposure duration, sound level, and use of hearing protection are reported for each life period separately. Simple-to-follow methods are provided for the estimation of free-field sound level, the sound level emitted by personal listening devices, and the attenuation provided by hearing protective equipment. An energy-based means of combining the resulting data is supplied, along with a primarily energy-based method for incorporating firearm-noise exposure. Finally, the NESI acknowledges the need of some users to tailor the procedures; this flexibility is afforded, and reasonable modifications are described. Competency needs of new users are addressed through detailed interview instructions (including troubleshooting tips) and a demonstration video. Limited evaluation data are available, and future efforts at evaluation are proposed.
    Matched MeSH terms: Noise, Occupational/adverse effects*
  19. Sayapathi BS, Su AT, Koh D
    J Occup Health, 2014;56(1):1-11.
    PMID: 24270928
    OBJECTIVES: A systematic review was conducted to identify the effectiveness of different permissible exposure limits in preserving the hearing threshold level. This review compared the limits of the US National Institute of Occupational Safety and Health with those of the US Occupational Safety and Health Administration. The prevalence of occupational noise-induced hearing loss is on an increasing trend globally. This review was performed to reduce the prevalence of noise-induced hearing loss.

    METHODS: We searched 3 major databases, i.e., PubMed, Embase and Lippincott Williams & Wilkins Journals@Ovid, for studies published up until 1May 2013 without language restrictions. All study designs were included in this review. The studies were identified and retrieved by two independent authors.

    RESULTS: Of 118 titles scanned, 14 duplicates were removed, and a total of 13 abstracts from all three databases were identified for full-text retrieval. From the full text, eight articles met the inclusion criteria for this systematic review. These articles showed acceptable quality based on our scoring system. Most of the studies indicated that temporary threshold shifts were much lower when subjects were exposed to a noise level of 85 dBA or lower.

    CONCLUSIONS: There were more threshold shifts in subjects adopting 90 dBA compared with 85 dBA. These temporary threshold shifts may progress to permanent shifts over time. Action curtailing noise exposure among employees would be taken earlier on adoption of 85 dBA as the permissible exposure limit, and hence prevalence of noise-induced hearing loss may be reduced.

    Matched MeSH terms: Noise, Occupational/adverse effects*; Noise, Occupational/prevention & control
  20. Sen RN, Yeow PH
    Int J Occup Saf Ergon, 2003;9(1):57-74.
    PMID: 12636892
    The study aimed at reducing the occupational health and safety problems faced by the manual component insertion operators. Subjective and objective assessments, and direct observations were made in the printed circuit assembly factory. Simple and low-cost ergonomic interventions were implemented, that is, repairing chairs, reducing high workloads, assigning operators to a maximum of 2 workstations, confining machines that emitted bad smell and much noise, and providing finger work aids. The results of the interventions were reductions in operators' work discomforts, that is, chair discomfort (by 90%), high work stress, and discomfort due to profound change in their workstations. Their health hazards were also eliminated, that is, inhalation of toxic fumes, exposure to too much noise, and pain due to pressing sharp components.
    Matched MeSH terms: Noise, Occupational
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links