Displaying all 19 publications

Abstract:
Sort:
  1. Ng SL, Seng CE, Lim PE
    Chemosphere, 2009 Jun;75(10):1392-400.
    PMID: 19307013 DOI: 10.1016/j.chemosphere.2009.02.049
    The bioregeneration efficiencies of powdered activated carbon (PAC) and pyrolyzed rice husk loaded with phenol and p-nitrophenol were quantified by oxygen uptake measurements using the respirometry technique in two approaches: (i) simultaneous adsorption and biodegradation and (ii) sequential adsorption and biodegradation. It was found that the applicability of the simultaneous adsorption and biodegradation approach was constrained by the requirement of adsorption preceding biodegradation in order to determine the initial adsorbent loading accurately. The sequential adsorption and biodegradation approach provides a good estimate of the upper limit of the bioregeneration efficiency for the loaded adsorbent in the simultaneous adsorption and biodegradation processes. The results showed that the mean bioregeneration efficiencies for PAC loaded with phenol and p-nitrophenol, respectively, obtained using the two approaches were in good agreement.
    Matched MeSH terms: Nitrophenols/analysis; Nitrophenols/metabolism*
  2. Ng SL, Seng CE, Lim PE
    Chemosphere, 2010 Jan;78(5):510-6.
    PMID: 20035966 DOI: 10.1016/j.chemosphere.2009.11.041
    A kinetic model consisting of first-order desorption and biodegradation processes was developed to describe the bioregeneration of phenol- and p-nitrophenol-loaded powdered activated carbon (PAC) and pyrolyzed rice husk (PRH), respectively. Different dosages of PAC and PRH were loaded with phenol or p-nitrophenol by contacting with the respective phenolic compound at various concentrations. The kinetic model was used to fit the phenol or p-nitrophenol concentration data in the bulk solution during the bioregeneration process to determine the rate constants of desorption, k(d), and biodegradation, k. The results showed that the kinetic model fitted relatively well (R(2)>0.9) to the experimental data for the phenol- and p-nitrophenol-loaded PAC as well as p-nitrophenol-loaded PRH. Comparison of the values of k(d) and k shows that k is much greater than k(d). This indicates clearly that the desorption process is the rate-determining step in bioregeneration and k(d) can be used to characterize the rate of bioregeneration. The trend of the variation of the k(d) values with the dosages of PAC or PRH used suggests that higher rate of bioregeneration can be achieved under non-excess adsorbent dosage condition.
    Matched MeSH terms: Nitrophenols/metabolism*
  3. Nasaruddin RR, Yao Q, Chen T, Hülsey MJ, Yan N, Xie J
    Nanoscale, 2018 Dec 04.
    PMID: 30512030 DOI: 10.1039/c8nr07197g
    Quasi-homogeneous ligand-protected gold nanoclusters (Au NCs) with atomic precision and well-defined structure offer great opportunity for exploring the catalytic nature of nanogold catalysts at a molecular level. Herein, using real-time electrospray ionization mass spectrometry (ESI-MS), we have successfully identified the desorption and re-adsorption of p-mercaptobenzoic acid (p-MBA) ligands from Au25(p-MBA)18 NC catalysts during the hydrogenation of 4-nitrophenol in solution. This ligand dynamic (desorption and re-adsorption) would initiate structural transformation of Au25(p-MBA)18 NC catalysts during the reaction, forming a mixture of smaller Au NCs (Au23(p-MBA)16 as the major species) at the beginning of catalytic reaction, which could further be transformed into larger Au NCs (Au26(p-MBA)19 as the major species). The adsorption of hydrides (from NaBH4) is identified as the determining factor that could induce the ligand dynamic and structural transformation of NC catalysts. This study provides fundamental insights into the catalytic nature of Au NCs, including catalytic mechanism, active species and stability of Au NC catalysts during a catalytic reaction.
    Matched MeSH terms: Nitrophenols
  4. Loo YM, Lim PE, Seng CE
    Environ Technol, 2010 Apr 14;31(5):479-87.
    PMID: 20480823 DOI: 10.1080/09593330903514482
    The objective of this research was to evaluate the treatment ofp-nitrophenol (PNP) as a sole organic carbon source using a sequencing batch reactor (SBR) with the addition of adsorbent. Two types of adsorbents, namely powdered activated carbon (PAC) and pyrolysed rice husk (PRH) were used in this study. Two identical SBRs, each with a working volume of 10 L, were operated with fill, react, settle, draw and idle periods in the ratio of 2:8:1:0.75:0.25 for a cycle time of 12 h. The results showed that, without the addition of adsorbent, increasing the influent PNP concentration to 200 mg/L resulted in the deterioration of chemical oxygen demand (COD) removal efficiency and PNP removal efficiency in the SBRs. Improvement in the performance of the SBR was observed with the addition of PAC. When the dosage of 1.0 g PAC/cycle was applied, COD removal of 95% and almost complete removal of PNP were achieved at the influent PNP concentration of 300 mg/L. The kinetic study showed that the rates of COD and PNP removal can be described by the first-order kinetics. The enhancement of performance in the PAC-supplemented SBR was postulated to be due to the initial adsorption of PNP by the freshly added and the bioregenerated PAC, thus reducing the inhibition on the microorganisms. The PRH was found to be ineffective because of its relatively low adsorption capacity for PNP, compared with that of PAC.
    Matched MeSH terms: Nitrophenols/analysis*; Nitrophenols/chemistry
  5. Soo JW, Abdullah LC, Jamil SNAM, Adeyi AA
    Water Sci Technol, 2021 Jul;84(1):237-250.
    PMID: 34280167 DOI: 10.2166/wst.2021.204
    In this paper, the adsorptive performance of synthesized thiourea (TU) modified poly(acrylonitrile-co-acrylic acid) (TU-P(AN-co-AA)) polymeric adsorbent for capturing p-nitrophenol (PNP) from aqueous solution was investigated. TU-P(AN-co-AA) was synthesized via the redox polymerization method with acrylonitrile (AN) and acrylic acid (AA) as the monomers, then modified chemically with thiourea (TU). Characterization analysis with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), elemental microanalysis for CHNS, zeta potential measurement, Brunauer-Emmett-Teller (BET) surface analysis and thermal analyses were carried out to determine the morphology and physico-chemical properties of the synthesized polymer. The characterization results indicated successful surface modification of polymer with TU. The performance of TU-P(AN-co-AA) for the removal of PNP was investigated under various experimental parameters (adsorbent dosage, initial adsorbate concentration, contact time and temperature). The results demonstrated that the Freundlich isotherm model and pseudo-second-order kinetic model best described the equilibrium and kinetic data, respectively. Thermodynamic studies showed that the uptake of PNP by TU-P(AN-co-AA) was spontaneous and exothermic in nature. The results of the regeneration studies suggested that the TU-P(AN-co-AA) polymer is a reusable adsorbent with great potential for removing PNP from wastewater.
    Matched MeSH terms: Nitrophenols
  6. Handayani N, Achmad S, Miletic N, Loos K, Wahyuningrum D
    In spite of their excellent catalytic properties, enzymes should be improved before their implementation both in industrial and laboratorium scales. Immobilization of enzyme is one of the ways to improve their properties. Candida antarctica lipase B (Cal-B) has been reported in numerous publications to be a particularly useful enzyme catalizing in many type of reaction including regio- and enantio- synthesis. For this case, cross-linking of immobilized Cal-B with 1,2,7,8 diepoxy octane is one of methods that proved significantly more stable from denaturation by heat, organic solvents, and proteolysis than lyophilized powder or soluble enzymes. More over, the aim of this procedure is to improve the activity and reusability of lipase. Enzyme kinetics test was carried out by transesterification reaction between 4-nitrophenyl acetate (pNPA) and methanol by varying substrate concentrations, and the result is immobilized enzymes follows the Michaelis-Menten models and their activity is match with previous experiment. Based on the Vmax values, the immobilized enzymes showed higher activity than the free enzyme. Cross-linking of immobilized lipase indicate that cross-linking by lower concentration of cross-linker, FIC (immobilized lipase that was incubated for 24 h) gave the highest activity and cross-linking by higher concentration of cross-linker, PIC (immobilized lipase that was incubated for 2 h) gives the highest activity. However, pore size and saturation level influenced their activity.
    Matched MeSH terms: Nitrophenols
  7. Chong YT, Mohd Ariffin M, Mohd Tahir N, Loh SH
    Talanta, 2018 Jan 01;176:558-564.
    PMID: 28917790 DOI: 10.1016/j.talanta.2017.08.068
    Electro-mediated microextraction (EMM) combined with micro-high performance liquid chromatography-ultraviolet detection was successfully developed for the determination of selected phenols, namely 4-chlorophenol (4CP), 2-nitrophenol (2NP) and 2,4-dichlorophenols (2,4 DCP) in water. A solvent-impregnated agarose gel disc was utilized as a solvent holder in this study. Under optimum extraction conditions, the method showed good linearity in the range of 0.1-250µgL-1, 0.3-250µgL-1and 0.2-500µgL-1for 4CP, 2NP and 2,4 DCP, respectively with correlation coefficients of ≥ 0.9975, ultra-trace LODs (0.03-0.1µgL-1) and satisfactory relative recovery average (85.0-114.1%) for the analysis of selected phenols. The proposed method was rapid and eco-friendly as the solvent holder was constructed using minute amounts of extraction solvent immobilized within the biodegradable agarose gel disc. A comparative microextraction technique termed solvent-impregnated agarose gel liquid phase microextraction (AG-LPME) was re-optimized and validated for the extraction of phenols in water. The method offered good linearity, ultra-trace LODs ranging 0.1-0.5µgL-1and satisfactory average of relative recovery (86.1-114.1%). The EMM was superior in terms of sensitivity and time-effectiveness compared to AG-LPME. Both techniques combine extraction and pre-concentration in mini-scaled approaches using an eco-friendly solvent holder that fulfil the green chemistry concept.
    Matched MeSH terms: Nitrophenols
  8. Halim MYA, Tan WL, Bakar NHHA, Bakar MA
    Materials (Basel), 2014 Dec 04;7(12):7737-7751.
    PMID: 28788272 DOI: 10.3390/ma7127737
    Porous structured silicon or porous silicon (PS) powder was prepared by chemical etching of silicon powder in an etchant solution of HF: HNO₃: H₂O (1:3:5 v/v). An immersion time of 4 min was sufficient for depositing Cu metal from an aqueous solution of CuSO₄ in the presence of HF. Scanning electron microscopy (SEM) analysis revealed that the Cu particles aggregated upon an increase in metal content from 3.3 wt% to 9.8 wt%. H₂-temperature programmed reduction (H₂-TPR) profiles reveal that re-oxidation of the Cu particles occurs after deposition. Furthermore, the profiles denote the existence of various sizes of Cu metal on the PS. The Cu-PS powders show excellent catalytic reduction on the p-nitrophenol regardless of the Cu loadings.
    Matched MeSH terms: Nitrophenols
  9. Zain NN, Abu Bakar NK, Mohamad S, Saleh NM
    PMID: 24161875 DOI: 10.1016/j.saa.2013.09.129
    A greener method based on cloud point extraction was developed for removing phenol species including 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and 4-nitrophenol (4-NP) in water samples by using the UV-Vis spectrophotometric method. The non-ionic surfactant DC193C was chosen as an extraction solvent due to its low water content in a surfactant rich phase and it is well-known as an environmentally-friendly solvent. The parameters affecting the extraction efficiency such as pH, temperature and incubation time, concentration of surfactant and salt, amount of surfactant and water content were evaluated and optimized. The proposed method was successfully applied for removing phenol species in real water samples.
    Matched MeSH terms: Nitrophenols/isolation & purification*
  10. Sanagi MM, Miskam M, Wan Ibrahim WA, Hermawan D, Aboul-Enein HY
    J Sep Sci, 2010 Jul;33(14):2131-9.
    PMID: 20549667 DOI: 10.1002/jssc.201000172
    A three-phase hollow fiber liquid-phase microextraction method coupled with CE was developed and used for the determination of partition coefficients and analysis of selected nitrophenols in water samples. The selected nitrophenols were extracted from 14 mL of aqueous solution (donor solution) with the pH adjusted to pH 3 into an organic phase (1-octanol) immobilized in the pores of the hollow fiber and finally backextracted into 40.0 microL of the acceptor phase (NaOH) at pH 12.0 located inside the lumen of the hollow fiber. The extractions were carried out under the following optimum conditions: donor solution, 0.05 M H(3)PO(4), pH 3.0; organic solvent, 1-octanol; acceptor solution, 40 microL of 0.1 M NaOH, pH 12.0; agitation rate, 1050 rpm; extraction time, 15 min. Under optimized conditions, the calibration curves for the analytes were linear in the range of 0.05-0.30 mg/L with r(2)>0.9900 and LODs were in the range of 0.01-0.04 mg/L with RSDs of 1.25-2.32%. Excellent enrichment factors of up to 398-folds were obtained. It was found that the partition coefficient (K(a/d)) values were high for 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol and 2,6-dinitrophenol and that the individual partition coefficients (K(org/d) and K(a/org)) promoted efficient simultaneous extraction from the donor through the organic phase and further into the acceptor phase. The developed method was successfully applied for the analysis of water samples.
    Matched MeSH terms: Nitrophenols/analysis*
  11. Goh CP, Seng CE, Sujari AN, Lim PE
    Environ Technol, 2009 Jun;30(7):725-36.
    PMID: 19705610 DOI: 10.1080/09593330902911689
    The objective of this study is to evaluate the performance of sequencing batch biofilm reactors (SBBRs) and sequencing batch reactor (SBR) in the simultaneous removal of p-nitrophenol (PNP) and ammoniacal nitrogen. SBBRs involved the use of polyurethane sponge cubes and polyethylene rings, respectively, as carrier materials. The results demonstrate that complete removal of PNP was achievable for the SBR and SBBRs up to the PNP concentration of 350 mg/l (loading rate of 0.368 kg/m3 d). At this loading rate, the average ammoniacal nitrogen removal efficiency for the SBR and SBBR (with polyethylene rings) was reduced to 86% and 96%, respectively. However, the SBBR (with polyurethane sponge cubes) still managed to achieve an almost 100% ammoniacal nitrogen removal. Based on the results, the performance of the SBBRs was better than that of SBR in PNP and ammoniacal nitrogen removal. The results of the gas chromatography mass spectroscopy, high-performance liquid chromatography and ultraviolet-visible analyses indicate that complete mineralization of PNP was achieved in all of the reactors.
    Matched MeSH terms: Nitrophenols/isolation & purification*
  12. Khan FU, Asimullah, Khan SB, Kamal T, Asiri AM, Khan IU, et al.
    Int J Biol Macromol, 2017 Sep;102:868-877.
    PMID: 28428128 DOI: 10.1016/j.ijbiomac.2017.04.062
    A very simple and low-cost procedure has been adopted to synthesize efficient copper (Cu), silver (Ag) and copper-silver (Cu-Ag) mixed nanoparticles on the surface of pure cellulose acetate (CA) and cellulose acetate-copper oxide nanocomposite (CA-CuO). All nanoparticles loaded onto CA and CA-CuO presented excellent catalytic ability, but Cu-Ag nanoparticles loaded onto CA-CuO (Cu0-Ag0/CA-CuO) exhibited outstanding catalytic efficiency to convert 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) in the presence of NaBH4. Additionally, the Cu0-Ag0/CA-CuO can be easily recovered by removing the sheet from the reaction media, and can be recycled several times, maintaining high catalytic ability for four cycles.
    Matched MeSH terms: Nitrophenols/chemistry*
  13. Imran S, Taha M, Ismail NH, Khan KM, Naz F, Hussain M, et al.
    Molecules, 2014;19(8):11722-40.
    PMID: 25102118 DOI: 10.3390/molecules190811722
    In an effort to develop new antibacterial drugs, some novel bisindolylmethane derivatives containing Schiff base moieties were prepared and screened for their antibacterial activity. The synthesis of the bisindolylmethane Schiff base derivatives 3-26 was carried out in three steps. First, the nitro group of 3,3'-((4-nitrophenyl)-methylene)bis(1H-indole) (1) was reduced to give the amino substituted bisindolylmethane 2 without affecting the unsaturation of the bisindolylmethane moiety using nickel boride in situ generated. Reduction of compound 1 using various catalysts showed that combination of sodium borohydride and nickel acetate provides the highest yield for compound 2. Bisindolylmethane Schiff base derivatives were synthesized by coupling various benzaldehydes with amino substituted bisindolylmethane 2. All synthesized compounds were characterized by various spectroscopic methods. The bisindolylmethane Schiff base derivatives were evaluated against selected Gram-positive and Gram-negative bacterial strains. Derivatives having halogen and nitro substituent display weak to moderate antibacterial activity against Salmonella typhi, S. paratyphi A and S. paratyphi B.
    Matched MeSH terms: Nitrophenols/chemical synthesis; Nitrophenols/chemistry
  14. Sa'don NA, Rahim AA, Hussin MH
    Int J Biol Macromol, 2017 May;98:701-708.
    PMID: 28174085 DOI: 10.1016/j.ijbiomac.2017.01.137
    This article reports on the structural characteristics and antioxidant activity of unmodified autohydrolyzed ethanol organosolv lignin (AH EOL) extracted from oil palm fronds (OPF) and modified autohydrolyzed ethanol organosolv lignin via incorporation of p-nitrophenol (AHNP EOL). The isolated lignin were analyzed by FTIR, (1)H and (13)C NMR spectroscopy, 2D NMR; HSQC and HMBC, CHN analysis, molecular weight distribution using GPC analyzer, thermal analysis; TGA and DSC. The chemical modification by utilizing an organic scavenger during delignification process provided smaller lignin fragments and enhanced the solubility of lignin by reducing its hydrophobicity properties. It was revealed that the antioxidant properties increased as compared to the unmodified organosolv lignin. Additionally, the modified lignin has better solubility in water (DAHNP EOL=35%>DAH EOL=25%).
    Matched MeSH terms: Nitrophenols
  15. Sivaramakarthikeyan R, Iniyaval S, Saravanan V, Lim WM, Mai CW, Ramalingan C
    ACS Omega, 2020 May 05;5(17):10089-10098.
    PMID: 32391496 DOI: 10.1021/acsomega.0c00630
    Synthesis of a series of benzimidazole-ornamented pyrazoles, 6a-6j has been obtained from arylhydrazine and aralkyl ketones via a multistep synthetic strategy. Among them, a hybrid-possessing para-nitrophenyl moiety connected to a pyrazole scaffold (6a) exerted the highest anti-inflammatory activity, which is superior to the standard, diclofenac sodium. While executing the 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity, a hybrid-possessing para-bromophenyl unit integrated at the pyrazole structural motif (6i) exhibited the highest activity among the hybrids examined. Besides, evaluation of anticancer potency of the synthesized hybrids revealed that the one containing a para-fluorophenyl unit tethered at the pyrazole nucleus (6h) showed the highest activity against both the pancreatic cancer cells (SW1990 and AsPCl) investigated. Considerable binding affinity between B-cell lymphoma and the hybrid, 6h has been reflected while performing molecular docking studies (-8.65 kcal/mol). The outcomes of the investigation expose that these hybrids could be used as effective intermediates to construct more potent biological agents.
    Matched MeSH terms: Nitrophenols
  16. Akhtar K, Ali F, Sohni S, Kamal T, Asiri AM, Bakhsh EM, et al.
    Environ Sci Pollut Res Int, 2020 Jan;27(1):823-836.
    PMID: 31811610 DOI: 10.1007/s11356-019-06908-y
    Lignocellulosic biomass waste is a cheap, eco-friendly, and sustainable raw material for a wide array of applications. In the present study, an easy, fast, and economically feasible route has been proposed for the preparation of different zero-valent metal nanoparticles (ZV-MNPs) based on Cu, Co, Ag, and Ni NPs using empty fruit bunch (EFB) biomass residue as support material. The catalytic efficiency of ZV-MNPs/EFB catalyst was investigated against five model pollutants, such as methyl orange (MO), congo red (CR), methylene blue (MB), acridine orange (AO), and 4-nitrophenol (4-NP) using NaBH4 as a source of hydrogen and electron. Comparative study revealed that among as-prepared ZV-MNPs/EFB catalysts, Cu-NPs immobilized onto EFB (Cu/EFB) exhibited maximum catalytic efficiency towards pollutant abasement. Degradation reactions were highly efficient, and were completed within a short time (4 min) in case of MO, CR, and MB, whilst AO and 4-NP were reduced in less than 15 min. Kinetic investigation revealed that the degradation rate of model pollutants accorded with pseudo-first order model. Furthermore, supported catalysts were easily recovered after the completion of experiment by simply pulling the catalyst from reaction system. Recyclability tests performed on Cu/EFB revealed that more than 97% of the reduction was achieved in case of MO dye for four successive cycles of reuse. The as-prepared heterostructure showed multifunctional properties, such as enhanced uptake of contaminants, high catalytic efficiency, and easy recovery, hence, offers great prospects in wastewater purification.
    Matched MeSH terms: Nitrophenols
  17. Ranjani B, Pandian K, Kumar GA, Gopinath SCB
    Int J Biol Macromol, 2019 Jul 15;133:1280-1287.
    PMID: 31051204 DOI: 10.1016/j.ijbiomac.2019.04.196
    Silver nanoparticle was synthesized using D-glucosamine chitosan base as green reducing agent at elevated temperature in alkaline pH ranges. The excess of D-glucosamine chitosan base was used as it is both stabilizing and reducing agent at different pHs, regulates the shape and size of the silver nanoparticles. The progressive growth of silver nanoparticles was monitored by UV-Visible spectral studies. A sharp peak at 420 nm indicates the formation of spherical silver nanoparticles. The size and shape of silver nanoparticles were observed from Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) methods. The anisotropically grown nanoparticles were used as probe for Surface Enhanced Raman Studies (SERS) using ATP (4-aminothiophenol) as a model system. The catalytic behavior of silver nanoparticles was exploited for 4-nitrophenol reduction and observed that the reduction reaction follows pseudo first order kinetics with a rate constant 0.65 min. The antibacterial activity of silver nanoparticles was also tested for both gram-positive and -negative microorganisms, in which higher zone of inhibition was observed for gram negative microorganism.
    Matched MeSH terms: Nitrophenols/chemistry
  18. Sahalan AZ, Dixon RA
    Int J Antimicrob Agents, 2008 Mar;31(3):224-7.
    PMID: 18083010
    The role of membrane permeabilisation and disruption in the mechanism of action of some polymyxin analogues against Gram-negative organisms is contentious. The effects of polymyxin B (PMB) and its analogue polymyxin B nonapeptide (PMBN) on Escherichia coli envelopes should correlate, but previous work by other workers suggests that PMBN has a different mode of action. This study has reassessed the biochemical techniques used previously and has shown that, in contrast to previous studies, PMBN (a well-characterised antibacterial synergist) readily releases periplasmic proteins and lipopolysaccharide from treated E. coli at subinhibitory concentrations in normal physiological buffer conditions. We conclude that, when tested with appropriate methodology, PMBN closely correlates with the early effects of PMB on the cell envelope of E. coli and this study shows that it is now consistent with the accepted interactions of membrane-active agents against Gram-negative cells.
    Matched MeSH terms: Nitrophenols/metabolism
  19. Pui, L.P., Abdulkarim, S.M., Ghazali, H.M.
    MyJurnal
    5'-Phosphodiesterase (5'-PDE) is an enzyme that hydrolyses RNA to form 5'-inosine monophosphate (5'-IMP) and 5'-guanosine monophosphate (5'-GMP), which function as flavour enhancers. Selection of the best producer of 5'-PDE was made by determining the activity of the enzyme in six seeds that have been germinated, namely mung bean (Vigna radiate), soybean (Glycine max), adzuki/red bean (Vigna angularis L.), chick pea (Cicer arietinum), black eye pea (Vigna unguiculata) and petai (Parkia speciosa). Seeds that were not germinated acted as the control. In order to ensure there is no contamination from potential 5'-PDE-producing microorganisms during germination, microbial growth was reduced by using different surface sterilizing treatments where the seeds were soaked in 100 mL solution containing different concentrations of sodium hypochlorite (with or without 0.05% sodium azide) for 5 minutes before rinsing it five times with sterilized distilled water (total 500 mL). The seeds were observed every day for 3 days and the best surface sterilizing treatment was selected based on absence of mold growth and the effects on hypocotyl length. Sodium hypochlorite at 0.3% (v/v) concentration was able to inhibit mold growth in adzuki bean, soybean and chickpea. On the other hand, only 0.1% (v/v) sodium hypochlorite was needed to inhibit mold growth in black eye pea and petai, while mung bean required 0.05% (v/v) sodium hypochlorite to inhibit mold growth. Under these conditions, the growth of hypocotyl (hypocotyls length) was only slightly affected compared to the control. 5'-PDE was extracted from seeds that have been germinated for 24 hours and their control (ungerminated seeds) by homogenization in a blender with 400 mL of 50 mM acetate buffer, pH 4.5. After that, the homogenates were stirred for 30 min and the centrifuged at 9000 rpm for 15 min at 10°C. 5'-PDE activity was determined using thymidine 5'-monophosphate p-nitrophenyl ester as substrate at pH 7.0 and 55°C. The formation of nucleotide monophosphates, the products of reaction, was determined at 405 nm. As a strong presence of phosphomonoesterase (PME) will reduce the yield of nucleotide monophosphates as the enzyme hydrolyzes these products into nucleosides and orthophosphate, PME activity was also determined using p-nitrophenyl phosphate as the substrate at 60°C and pH 5.0. Thus, the seed with the highest 5'-PDE activity and a low PME activity can be selected. Germinated adzuki bean was found to have the highest 5'-PDE activity (0.59 µmol p-nitrophenol/min/mg protein) among the germinated seeds. A time-course study indicated that the level of 5'-PDE in adzuki bean increased with time of germination until 15 hours (0.69 µmol p-nitrophenol/min/mg protein), after which the acitivity decreased until it reached the basal level (0.44 µmol p-nitrophenol/min/mg protein) at 72 hours. On the other hand, PME in the bean was the highest at 9 h germination (0.98 µmol p-nitrophenol/min/mg protein). In general, controls have very low basal level of 5'-PDE activity (0.18- 0.42 µmol p-nitrophenol/min/mg protein).
    Matched MeSH terms: Nitrophenols
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links