Previously, several aurone derivatives were identified with promising neuroprotective activities. In developing these compounds to target the central nervous system (CNS), an assessment of their blood-brain barrier (BBB) permeability was performed using in vitro BBB models: parallel artificial membrane permeability assay-BBB which measures passive permeability and primary porcine brain endothelial cell model which enables determination of the involvement of active transport mechanism. Parallel artificial membrane permeability assay-BBB identified most compounds with high passive permeability, with 3 aurones having exceptional Pevalues highlighting the importance of basic amine moieties and optimal lipophilicity for good passive permeability. Bidirectional permeability assays with porcine brain endothelial cell showed a significant net influx permeation of the aurones indicating a facilitated uptake mechanism in contrast to donepezil, a CNS drug included in the evaluation which only displayed passive permeation. From pH-dependent permeability assay coupled with data analysis using pCEL-X software, intrinsic transcellular permeability (Po) of a representative aurone 4-3 was determined, considering factors such as the aqueous boundary layer that may hinder accurate in vitro to in vivo correlation. The Po value determined supported the in vivo feasibility of the aurone as a CNS-active compound.
There is a crucial need to develop new effective drugs for Alzheimer's disease (AD) as the currently available AD treatments provide only momentary and incomplete symptomatic relief. Amongst natural products, curcumin, a major constituent of turmeric, has been intensively investigated for its neuroprotective effect against β-amyloid (Aβ)-induced toxicity in cultured neuronal cells. The ability of curcumin to attach to Aβ peptide and prevent its accumulation is attributed to its three structural characteristics such as the presence of two aromatic end groups and their co-planarity, the length and rigidity of the linker region and the substitution conformation of these aromatics. However, curcumin failed to reach adequate brain levels after oral absorption in AD clinical trials due to its low water solubility and poor oral bioavailability. A number of new curcumin analogs that mimic the active site of the compound along with analogs that mimic the curcumin anti-amyloid effect combined with anticholinesterase effect have been developed to enhance the bioavailability, pharmacokinetics, water solubility, stability at physiological conditions and delivery of curcumin. In this article, we have summarized all reported synthetic analogs of curcumin showing effects on β-amyloid and discussed their potential as therapeutic and diagnostic agents for AD.
Vitamin E has been recognized as an essential vitamin since their discovery in 1922. Although the functions of tocopherols are well established, tocotrienols have been the unsung heroes of vitamin E. Due to their structural differences, tocotrienols were reported to exert distinctive properties compared to tocopherols. While most vegetable oils contain higher amount of tocopherols, tocotrienols were found abundantly in palm oil. Nature has made palm vitamin E to contain up to 70% of total tocotrienols, among which alpha-, gamma- and delta-tocotrienols are the major constituents. Recent advancements have shown their biological properties in conferring protection against cancer, cardiovascular diseases, neurodegeneration, oxidative stress and immune regulation. Preclinical results of these physiological functions were translated into clinical trials gaining global attention. This review will discuss in detail the evidence in human studies to date in terms of efficacy, population, disease state and bioavailability. The review will serve as a platform to pave the future direction for tocotrienols in clinical settings.