It is more than 50 years since the Epstein-Barr virus (EBV), the first human tumour virus, was discovered. EBV has subsequently been found to be associated with a diverse range of tumours of both lymphoid and epithelial origin. Progress in the molecular analysis of EBV has revealed fundamental mechanisms of more general relevance to the oncogenic process. This Timeline article highlights key milestones in the 50-year history of EBV and discusses how this virus provides a paradigm for exploiting insights at the molecular level in the diagnosis, treatment and prevention of cancer.
Matched MeSH terms: Neoplasms, Glandular and Epithelial/virology
Epstein-Barr virus (EBV) is a ubiquitous tumor-causing virus which infects more than 90% of the world population asymptomatically. Recent studies suggest that LMP-1, -2A and -2B cooperate in the tumorigenesis of EBV-associated epithelial cancers such as nasopharygeal carcinoma, oral and gastric cancer. In this study, LMPs were expressed in the HEK293T cell line to reveal their oncogenic mechanism via investigation on their involvement in the regulation of the cell cycle and genes that are involved. LMPs were expressed in HEK293T in single and co-expression manner. The transcription of cell cycle arrest genes were examined via real-time PCR. Cell cycle progression was examined via flow cytometry. 14-3-3σ and Reprimo were upregulated in all LMP-1 expressing cells. Moreover, cell cycle arrest at G(2)/M progression was detected in all LMP-1 expressing cells. Therefore, we conclude that LMP-1 may induce cell cycle arrest at G(2)/M progression via upregulation of 14-3-3σ and Reprimo.
Matched MeSH terms: Neoplasms, Glandular and Epithelial/virology