Displaying publications 1 - 20 of 315 in total

Abstract:
Sort:
  1. Goh PS, Ismail AF
    Membranes (Basel), 2021 Feb 25;11(3).
    PMID: 33668700 DOI: 10.3390/membranes11030158
    The design and synthesis of functional nanomaterials have been extensively explored over the last decade, primarily due to their exceptional physico-chemical properties [...].
    Matched MeSH terms: Nanostructures
  2. Muthoosamy K, Manickam S
    Mikrochim Acta, 2023 Mar 18;190(4):143.
    PMID: 36933103 DOI: 10.1007/s00604-023-05724-z
    Matched MeSH terms: Nanostructures*
  3. Murugasenapathi NK, Ghosh R, Ramanathan S, Ghosh S, Chinnappan A, Mohamed SAJ, et al.
    Crit Rev Anal Chem, 2023;53(5):1044-1065.
    PMID: 34788167 DOI: 10.1080/10408347.2021.2002133
    Transistor-based sensors have been widely recognized to be highly sensitive and reliable for point-of-care/bed-side diagnosis. In this line, a range of cutting-edge technologies has been generated to elevate the role of transistors for biomolecule detection. Detection of a wide range of clinical biomarkers has been reported using various configurations of transistors. The inordinate sensitivity of transistors to the field-effect imparts high sensitivity toward wide range of biomolecules. This overview has gleaned the present achievements with the technological advancements using high performance transistor-based sensors. This review encloses transistors incorporated with a variety of functional nanomaterials and organic elements for their excellence in selectivity and sensitivity. In addition, the technological advancements in fabrication of these microdevices or nanodevices and functionalization of the sensing elements have also been discussed. The technological gap in the realization of sensors in transistor platforms and the resulted scope for research has been discussed. Finally, foreseen technological advancements and future research perspectives are described.
    Matched MeSH terms: Nanostructures*
  4. Nasser IM, Ibrahim MHW, Zuki SSM, Algaifi HA, Alshalif AF
    Environ Sci Pollut Res Int, 2022 Mar;29(11):15318-15336.
    PMID: 34982380 DOI: 10.1007/s11356-021-18310-8
    Exposing concrete to high temperatures leads to harmful effects in its mechanical and microstructural properties, and ultimately to total failure. In this sense, various types of waste materials are exploited not only to tackle serious environmental issues but also to enhance the thermal stability of concrete exposed to elevated temperatures. Furthermore, nanomaterials have been incorporated in concrete as admixtures to reduce the thermal degradation of concrete due to exposure to high temperatures. In the present study, the effects of nanosilica (NS) incorporation on the properties of concrete subjected to elevated temperature are discussed in several sequential sections. The process mechanism of concrete deterioration due to fire exposure and the important factors that could affect the performance of concrete under fire were evaluated. Moreover, brief highlights on the effect of elevated temperature on concrete containing waste materials are included in this review paper. Reviews and summaries of the available and updated literature regarding concrete containing NS are considered. According to the findings of the studies under review, the addition of nanosilica to concrete contributed in reduced strength loss, minimized internal porosity, and enhanced matrix compactness in concrete.
    Matched MeSH terms: Nanostructures*
  5. Mazarji M, Bayero MT, Minkina T, Sushkova S, Mandzhieva S, Bauer TV, et al.
    Sci Total Environ, 2023 Jul 01;880:163330.
    PMID: 37023818 DOI: 10.1016/j.scitotenv.2023.163330
    Biochar can be used for soil remediation in environmentally beneficial manner, especially when combined with nanomaterials. After a decade of research, still, no comprehensive review was conducted on the effectiveness of biochar-based nanocomposites in controlling heavy metal immobilization at soil interfaces. In this paper, the recent progress in immobilizing heavy metals using biochar-based nanocomposite materials were reviewed and compared their efficacy against that of biochar alone. In details, an overview of results on the immobilization of Pb, Cd, Cu, Zn, Cr, and As was presented by different nanocomposites made by various biochars derived from kenaf bar, green tea, residual bark, cornstalk, wheat straw, sawdust, palm fiber, and bagasse. Biochar nanocomposite was found to be most effective when combined with metallic nanoparticles (Fe3O4 and FeS) and carbonaceous nanomaterials (graphene oxide and chitosan). This study also devoted special consideration to different remediation mechanisms by which the nanomaterials affect the effectiveness of the immobilization process. The effects of nanocomposites on soil characteristics related to pollution migration, phytotoxicity, and soil microbial composition were assessed. A future perspective on nanocomposites' use in contaminated soils was presented.
    Matched MeSH terms: Nanostructures*
  6. Abedini A, Bakar AA, Larki F, Menon PS, Islam MS, Shaari S
    Nanoscale Res Lett, 2016 Dec;11(1):287.
    PMID: 27283051 DOI: 10.1186/s11671-016-1500-z
    This paper focuses on the recent advances on radiolysis-assisted shape-controlled synthesis of noble metal nanostructures. The techniques and protocols for producing desirable shapes of noble metal nanoparticles are discussed through introducing the critical parameters which can influence the nucleation and growth mechanisms. Nucleation rate plays a vital role on the crystallinity of seeds while growth rate of different seeds' facets determines the final shape of resultant nanoparticles. Nucleation and growth rate both can be altered with factors such as absorbed dose, capping agents, and experimental environment condition to control the final shape. Remarkable physical and chemical properties of synthesized noble metal nanoparticles by controlled morphology have been systematically evaluated to fully explore their applications.
    Matched MeSH terms: Nanostructures
  7. Akter N, Radiman S, Mohamed F, Reza MI
    Mini Rev Med Chem, 2013 Jul;13(9):1327-39.
    PMID: 23544469
    Self-assembled nanocarriers attract increasing attention due to their wide application in various practical fields; among them, one of the most focused fields is drug delivery. Appropriate selection of surfactant is the basis for preparing a successful nanocarrier. Until now, from phospholipid to synthetic surfactants, many surfactants have been used to explore a suitable drug delivery vehicle for the complex in-vivo environment. Among all, bio surfactants are found to be more suitable due to their bio-origin, less-toxicity, biodegradability, cheaper rate and above all, their versatile molecular structures. This molecular property enables them to self assemble into fascinating structures. Moreover, binding DNA, enhancing pH sensitivity and stability allows novelty over their synthetic counterparts and phospholipid. This review paper focuses on the properties and applications of bio-nano-carriers for drug delivery. Micelle, microemulsion, and vesicle are the three nanocarriers which are discussed herein.
    Matched MeSH terms: Nanostructures*
  8. Yaghoubi A, Mélinon P
    Sci Rep, 2013;3:1083.
    PMID: 23330064 DOI: 10.1038/srep01083
    In recent years, plasma-assisted synthesis has been extensively used in large scale production of functional nano- and micro-scale materials for numerous applications in optoelectronics, photonics, plasmonics, magnetism and drug delivery, however systematic formation of these minuscule structures has remained a challenge. Here we demonstrate a new method to closely manipulate mesostructures in terms of size, composition and morphology by controlling permeability at the boundaries of an impermeable plasma surrounded by a blanket of neutrals. In situ and rapid growth of thin films in the core region due to ion screening is among other benefits of our method. Similarly we can take advantage of exceptional properties of plasma to control the morphology of the as deposited nanostructures. Probing the plasma at boundaries by means of observing the nanostructures, further provides interesting insights into the behaviour of gas-insulated plasmas with possible implications on efficacy of viscous heating and non-magnetic confinement.
    Matched MeSH terms: Nanostructures/chemistry*
  9. Dehhaghi M, Tabatabaei M, Aghbashlo M, Kazemi Shariat Panahi H, Nizami AS
    J Environ Manage, 2019 Dec 01;251:109597.
    PMID: 31563049 DOI: 10.1016/j.jenvman.2019.109597
    Anaerobic digestion (AD) of organic wastes is among the most promising approaches used for the simultaneous treatment of various waste streams, environment conservation, and renewable bioenergy generation (biomethane). Among the latest innovations investigated to enhance the overall performance of this process both qualitatively and quantitatively, the application of some nanoparticles (NPs) has attracted a great deal of attention. Typically, the NPs of potential benefit to the AD process could be divided into three groups: (i) zero-valent iron (ZVI) NPs, (ii) metallic and metal oxides NPs, and (iii) carbon-based NPs. The present review focuses on the latest findings reported on the application of these NPs in AD process and presents their various mechanisms of action leading to higher or lower biogas production rates. Among the NPs studies, ZVI NPs could be regarded as the most promising nanomaterials for enhancing biogas production through stabilizing the AD process as well as by stimulating the growth of beneficial microorganisms to the AD process and the enzymes involved. Future research should focus on various attributes of NPs when used as additives in biogas production, including facilitating mixing and pumping operations, enriching the population and diversity of beneficial microorganisms for AD, improving biogas release, and inducing the production and activity of AD-related enzymes. The higher volume of methane-enriched biogas would be translated into higher returns on investment and could therefore, result in further growth of the biogas production industry. Nevertheless, efforts should be devoted to decreasing the price of NPs so that the enhanced biogas and methane production (by over 90%, compared to control) would be more economically justified, facilitating the large-scale application of these compounds. In addition to economic considerations, environmental issues are also regarded as major constraints which should be addressed prior to widespread implementation of NP-augmented AD processes. More specifically, the fate of NPs augmented in AD process should be scrutinized to ensure maximal beneficial impacts while adverse environmental/health consequences are minimized.
    Matched MeSH terms: Nanostructures*
  10. Thomas P, Duolikun T, Rumjit NP, Moosavi S, Lai CW, Bin Johan MR, et al.
    J Mech Behav Biomed Mater, 2020 10;110:103884.
    PMID: 32957191 DOI: 10.1016/j.jmbbm.2020.103884
    Cellulose constitutes most of a plant's cell wall, and it is the most abundant renewable polymer source on our planet. Given the hierarchical structure of cellulose, nanocellulose has gained considerable attention as a nano-reinforcement for polymer matrices in various industries (medical and healthcare, oil and gas, packaging, paper and board, composites, printed and flexible electronics, textiles, filtration, rheology modifiers, 3D printing, aerogels and coating films). Herein, nanocellulose is considered as a sustainable nanomaterial due to its substantial strength, low density, excellent mechanical performance and biocompatibility. Indeed, nanocellulose exists in several forms, including bacterial cellulose, nanocrystalline cellulose and nanofibrillated cellulose, which results in biodegradable and environmentally friendly bionanocomposites with remarkably improved material properties. This paper reviews the recent advances in production, physicochemical properties, and structural characterization of nanocelluloses. It also summarises recent developments in several multifunctional applications of nanocellulose with an emphasis on bionanocomposite properties. Besides, various challenges associated with commercialisation and economic aspects of nanocellulose for current and future markets are also discussed inclusively.
    Matched MeSH terms: Nanostructures*
  11. Zhang Y, Liu X, Yusoff M, Razali MH
    Scanning, 2021;2021:3839235.
    PMID: 34630820 DOI: 10.1155/2021/3839235
    Flower-like titanium dioxide (TiO2) nanostructures are successfully synthesized using a hybrid sol-gel and a simple hydrothermal method. The sample was characterized using various techniques to study their physicochemical properties and was tested as a photocatalyst for methyl orange degradation and as an antibacterial material. Raman spectrum and X-ray diffraction (XRD) pattern show that the phase structure of the synthesized TiO2 is anatase with 80-100 nm in diameter and 150-200 nm in length of flower-like nanostructures as proved by field emission scanning electron microscope (FESEM). The energy-dispersive X-ray spectroscopy (EDS) analysis of flower-like anatase TiO2 nanostructure found that only titanium and oxygen elements are present in the sample. The anatase phase was confirmed further by a high-resolution transmission electron microscope (HRTEM) and selected area electron diffraction (SAED) pattern analysis. The Brunauer-Emmett-Teller (BET) result shows that the sample had a large surface area (108.24 m2/g) and large band gap energy (3.26 eV) due to their nanosize. X-ray photoelectron spectroscopy (XPS) analysis revealed the formation of Ti4+ and Ti3+ species which could prevent the recombination of the photogenerated electron, thus increased the electron transportation and photocatalytic activity of flower-like anatase TiO2 nanostructure to degrade the methyl orange (83.03%) in a short time (60 minutes). These properties also support the good performance of flower-like titanium dioxide (TiO2) nanostructure as an antibacterial material which is comparable with penicillin which is 13.00 ± 0.02 mm inhibition zone against Staphylococcus aureus.
    Matched MeSH terms: Nanostructures*
  12. Abdul Manaf SA, Mohamad Fuzi SFZ, Low KO, Hegde G, Abdul Manas NH, Md Illias R, et al.
    Appl Microbiol Biotechnol, 2021 Nov;105(21-22):8531-8544.
    PMID: 34611725 DOI: 10.1007/s00253-021-11616-0
    Carbon nanomaterials, due to their catalytic activity and high surface area, have potential as cell immobilization supports to increase the production of xylanase. Recombinant Kluyveromyces lactis used for xylanase production was integrated into a polymeric gel network with carbon nanomaterials. Carbon nanomaterials were pretreated before cell immobilization with hydrochloric acid (HCl) treatment and glutaraldehyde (GA) crosslinking, which contributes to cell immobilization performance. Carbon nanotubes (CNTs) and graphene oxide (GO) were further screened using a Plackett-Burman experimental design. Cell loading and agar concentration were the most important factors in xylanase production with low cell leakage. Under optimized conditions, xylanase production was increased by more than 400% compared to free cells. Immobilized cell material containing such high cell densities may exhibit new and unexplored beneficial properties because the cells comprise a large fraction of the component. The use of carbon nanomaterials as a cell immobilization support along with the entrapment method successfully enhances the production of xylanase, providing a new route to improved bioprocessing, particularly for the production of enzymes. KEY POINTS: • Carbon nanomaterials (CNTs, GO) have potential as cell immobilization supports. • Entrapment in a polymeric gel network provides space for xylanase production. • Plackett-Burman design screen for the most important factor for cell immobilization.
    Matched MeSH terms: Nanostructures*
  13. Sudheer S, Bai RG, Muthoosamy K, Tuvikene R, Gupta VK, Manickam S
    Environ Res, 2022 03;204(Pt A):111963.
    PMID: 34450157 DOI: 10.1016/j.envres.2021.111963
    The demand for the green synthesis of nanoparticles has gained prominence over the conventional chemical and physical syntheses, which often entails toxic chemicals, energy consumption and ultimately lead to negative environmental impact. In the green synthesis approach, naturally available bio-compounds found in plants and fungi can be effective and have been proven to be alternative reducing agents. Fungi or mushrooms are particularly interesting due to their high content of bioactive compounds, which can serve as excellent reducing agents in the synthesis of nanoparticles. Apart from the economic and environmental benefits, such as ease of availability, low synthesis/production cost, safe and no toxicity, the nanoparticles synthesized from this green method have unique physical and chemical properties. Stabilisation of the nanoparticles in an aqueous solution is exceedingly high, even after prolonged storage with unperturbed size uniformity. Biological properties were significantly improved with higher biocompatibility, anti-microbial, anti-oxidant and anti-cancer properties. These remarkable properties allow further exploration in their applications both in the medical and agricultural fields. This review aims to explore the mushroom-mediated biosynthesis of nanomaterials, specifically the mechanism and bio-compounds involved in the synthesis and their interactions for the stabilisation of nanoparticles. Various metal and non-metal nanoparticles have been discussed along with their synthesis techniques and parameters, making them ideal for specific industrial, agricultural, and medical applications. Only recent developments have been explored in this review.
    Matched MeSH terms: Nanostructures*
  14. Faiyaz M, Ganayee MA, Akhtar S, Krishnan S, Flora B, Dogra D, et al.
    Front Biosci (Landmark Ed), 2021 10 30;26(10):851-865.
    PMID: 34719210 DOI: 10.52586/4992
    Alzheimer's, a progressive neurodegenerative disease affects brain and neurons through enormous reduction in nerve cell regenerative capacity. Dementia and impairment of cognitive functions are more prevalent in Alzheimer's disease (AD) patients in both industrialized and non-industrialized countries. Various factors play significant role in molecular cascades that leads to neuronal inflammation, dementia and thereby AD progression. Current medications are symptomatic that alleviates pain while lack in absolute cure, urging researchers to explore targets and therapeutics. Interestingly, nanomedicines developed due to the onset of nanotechnology, are being extensively investigated for the treatment of AD. This review presents the advancement in nanotherapeutic strategies, involving the emergence of nanomaterials that offers advantage to pass through the blood-brain barrier and acts as a therapeutic modality against AD.
    Matched MeSH terms: Nanostructures*
  15. Mohamad Nor N, Ridhuan NS, Abdul Razak K
    Biosensors (Basel), 2022 Dec 06;12(12).
    PMID: 36551103 DOI: 10.3390/bios12121136
    This review covers the progress of nanomaterial-modified electrodes for enzymatic and non-enzymatic glucose biosensors. Fundamental insights into glucose biosensor components and the crucial factors controlling the electrochemical performance of glucose biosensors are discussed in detail. The metal, metal oxide, and hybrid/composite nanomaterial fabrication strategies for the modification of electrodes, mechanism of detection, and significance of the nanomaterials toward the electrochemical performance of enzymatic and non-enzymatic glucose biosensors are compared and comprehensively reviewed. This review aims to provide readers with an overview and underlying concept of producing a reliable, stable, cost-effective, and excellent electrochemical performance of a glucose biosensor.
    Matched MeSH terms: Nanostructures*
  16. Falina S, Anuar K, Shafiee SA, Juan JC, Manaf AA, Kawarada H, et al.
    Sensors (Basel), 2022 Dec 01;22(23).
    PMID: 36502059 DOI: 10.3390/s22239358
    Recently, there has been increasing interest in electrochemical printed sensors for a wide range of applications such as biomedical, pharmaceutical, food safety, and environmental fields. A major challenge is to obtain selective, sensitive, and reliable sensing platforms that can meet the stringent performance requirements of these application areas. Two-dimensional (2D) nanomaterials advances have accelerated the performance of electrochemical sensors towards more practical approaches. This review discusses the recent development of electrochemical printed sensors, with emphasis on the integration of non-carbon 2D materials as sensing platforms. A brief introduction to printed electrochemical sensors and electrochemical technique analysis are presented in the first section of this review. Subsequently, sensor surface functionalization and modification techniques including drop-casting, electrodeposition, and printing of functional ink are discussed. In the next section, we review recent insights into novel fabrication methodologies, electrochemical techniques, and sensors' performances of the most used transition metal dichalcogenides materials (such as MoS2, MoSe2, and WS2), MXenes, and hexagonal boron-nitride (hBN). Finally, the challenges that are faced by electrochemical printed sensors are highlighted in the conclusion. This review is not only useful to provide insights for researchers that are currently working in the related area, but also instructive to the ones new to this field.
    Matched MeSH terms: Nanostructures*
  17. Rasool M, Malik A, Waquar S, Arooj M, Zahid S, Asif M, et al.
    Bioengineered, 2022 Jan;13(1):759-773.
    PMID: 34856849 DOI: 10.1080/21655979.2021.2012907
    Nanomedicines are applied as alternative treatments for anticancer agents. For the treatment of cancer, due to the small size in nanometers (nm), specific site targeting can be achieved with the use of nanomedicines, increasing their bioavailability and conferring fewer toxic side effects. Additionally, the use of minute amounts of drugs can lead to cost savings. In addition, nanotechnology is effectively applied in the preparation of such drugs as they are in nm sizes, considered one of the earliest cutoff values for the production of products utilized in nanotechnology. Early concepts described gold nanoshells as one of the successful therapies for cancer and associated diseases where the benefits of nanomedicine include effective active or passive targeting. Common medicines are degraded at a higher rate, whereas the degradation of macromolecules is time-consuming. All of the discussed properties are responsible for executing the physiological behaviors occurring at the following scale, depending on the geometry. Finally, large nanomaterials based on organic, lipid, inorganic, protein, and synthetic polymers have also been utilized to develop novel cancer cures.
    Matched MeSH terms: Nanostructures*
  18. Karimi S, Tahir PM, Karimi A, Dufresne A, Abdulkhani A
    Carbohydr Polym, 2014 Jan 30;101:878-85.
    PMID: 24299851 DOI: 10.1016/j.carbpol.2013.09.106
    Cellulosic fibers from kenaf bast were isolated in three distinct stages. Initially raw kenaf bast fibers were subjected to an alkali pulping process. Then pulped fibers undergone a bleaching process and finally both pulped and bleached fibers were separated into their constituent nanoscale cellulosic fibers by mechanical shearing. The influence of each treatment on the chemical composition of fibers was investigated. Moreover morphology, functional groups, crystallinity, and thermal behavior of fiber hierarchy at different stages of purification were studied using scanning and transmission electron microscopies, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. Microscopy studies revealed that applied procedures successfully isolated nanoscale cellulosic fibers from both unbleached and bleached pulps. Chemical composition analysis and FTIR spectroscopy showed that lignin and hemicellulose were almost entirely removed by the applied treatments. XRD and TGA analyses demonstrated progressive enhancement of properties in fibers, hierarchically, in going from micro to nano scale. Interestingly no significant evolution was observed between obtained data of characterized ubnleached and bleached nanofibers.
    Matched MeSH terms: Nanostructures/chemistry*
  19. Ngo TA, Dinh H, Nguyen TM, Liew FF, Nakata E, Morii T
    Chem Commun (Camb), 2019 Oct 15;55(83):12428-12446.
    PMID: 31576822 DOI: 10.1039/c9cc04661e
    DNA is an attractive molecular building block to construct nanoscale structures for a variety of applications. In addition to their structure and function, modification the DNA nanostructures by other molecules opens almost unlimited possibilities for producing functional DNA-based architectures. Among the molecules to functionalize DNA nanostructures, proteins are one of the most attractive candidates due to their vast functional variations. DNA nanostructures loaded with various types of proteins hold promise for applications in the life and material sciences. When loading proteins of interest on DNA nanostructures, the nanostructures by themselves act as scaffolds to specifically control the location and number of protein molecules. The methods to arrange proteins of interest on DNA scaffolds at high yields while retaining their activity are still the most demanding task in constructing usable protein-modified DNA nanostructures. Here, we provide an overview of the existing methods applied for assembling proteins of interest on DNA scaffolds. The assembling methods were categorized into two main classes, noncovalent and covalent conjugation, with both showing pros and cons. The recent advance of DNA-binding adaptor mediated assembly of proteins on the DNA scaffolds is highlighted and discussed in connection with the future perspectives of protein assembled DNA nanoarchitectures.
    Matched MeSH terms: Nanostructures/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links