Displaying all 2 publications

Abstract:
Sort:
  1. Machha A, Achike FI, Mohd MA, Mustafa MR
    Eur J Pharmacol, 2007 Jun 22;565(1-3):144-50.
    PMID: 17442302
    Acute exposure to the flavonoid baicalein inhibited endothelium-dependent relaxation in physiological arteries, although the mechanisms are not fully understood. We investigated the effect of baicalein on vascular tone in Wistar-Kyoto (WKY) rat isolated aortic rings in the presence and absence of oxidative stress to further determine the underlying mechanisms. Exposure to baicalein (10 microM) completely abolished endothelium-dependent relaxation induced by acetylcholine and attenuated significantly the endothelium-independent relaxation induced by sodium nitroprusside. Baicalein, similar to Nomega-nitro-L-arginine methyl ester (L-NAME, 10 microM), potentiated significantly the contractile response of aortic rings to alpha1-adrenoceptor agonist phenylephrine. In the presence of L-NAME the baicalein effect on phenylphrine contraction or acetylcholine relaxation was unaltered, suggesting that these effects of baicalein are (like L-NAME effect) endothelial nitric oxide synthase (eNOS)/endothelium-derived nitric oxide-dependent. Inhibition of cyclooxygenase activity with indomethacin (10 microM) or scavenging of superoxide anions with superoxide dismutase (150 units/ml), but not scavenging of hydrogen peroxide with catalase (800 units/ml), enhanced significantly by an essentially similar extent the relaxation to acetylcholine in baicalein-pretreated aortic rings. Relaxant effect to acetylcholine was significantly attenuated in control aortic rings, but was completely abolished in baicalein-pretreated aortic rings in the presence of reduced form of beta-nicotinamide adenine di-nucleotide (beta-NADH, 300 microM). Baicalein blocked beta-NADH (300 microM)-induced transient contractions, suggesting that baicalein may have inhibited activity of NADH/NADPH-oxidase. Baicalein did not alter the failure of acetylcholine to induce relaxation in the presence of pyrogallol (300 microM). In summary, acute exposure to baicalein impairs eNOS/endothelium-derived nitric oxide-mediated vascular tone in rat aortas through the inhibition of endothelium-derived nitric oxide bioavailability coupled to reduced bioactivity of endothelium-derived nitric oxide and to cyclooxygenase-mediated release of superoxide anions.
    Matched MeSH terms: NAD/pharmacology
  2. Ajay M, Achike FI, Mustafa MR
    Pharmacol Res, 2007 May;55(5):385-91.
    PMID: 17317209
    In this study, we report the effects of a non-antioxidant flavonoid flavone on vascular reactivity in Wistar-Kyoto (WKY) rat isolated aortae. Whether flavone directly modulates vascular reactivity in spontaneously hypertensive rat (SHR) and streptozotocin-induced diabetic-WKY rat isolated aortae was also determined. Thoracic aortic rings were mounted in organ chambers and exposed to various drug treatments in the presence of flavone (10 microM) or its vehicle (DMSO), which served as control. Pretreatment with flavone enhanced relaxant effects to endothelium-dependent vasodilator acetylcholine (ACh) and attenuated contractile effects to alpha(1)-receptor agonist phenylephrine (PE) in WKY aortae compared to those observed in control aortic rings. Flavone had no effect on relaxations to ACh in WKY aortae incubated with either L-NAME or methylene blue, but enhanced relaxations to ACh in WKY aortae incubated with indomethacin or partially depolarized with KCl. Relaxations to ACh are totally abolished in both control or flavone pretreated endothelium-denuded WKY aortae. Flavone attenuated the inhibition by beta-NADH of ACh-induced relaxation in WKY aortae, but it had no significant effect on the transient contractions induced by beta-NADH nor the pyrogallol-induced abolishment of ACh-induced relaxation in WKY aortae. Flavone enhanced endothelium-independent relaxation to sodium nitroprusside (SNP) in both endothelium-intact and -denuded WKY aortae. Flavone enhanced relaxation to ACh and SNP as well as attenuated contractile effects to PE in SHR and diabetic aortae, a finding similar to that observed in normal WKY aortae. From these results, we conclude that flavone modulates vascular reactivity in normal as well as hypertensive and diabetic aortae. These effects of flavone results probably through enhanced bioactivity of nitric oxide released from the endothelium.
    Matched MeSH terms: NAD/pharmacology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links