Displaying all 2 publications

Abstract:
Sort:
  1. De Luca C, Thai JC, Raskovic D, Cesareo E, Caccamo D, Trukhanov A, et al.
    Mediators Inflamm, 2014;2014:924184.
    PMID: 24812443 DOI: 10.1155/2014/924184
    Growing numbers of "electromagnetic hypersensitive" (EHS) people worldwide self-report severely disabling, multiorgan, non-specific symptoms when exposed to low-dose electromagnetic radiations, often associated with symptoms of multiple chemical sensitivity (MCS) and/or other environmental "sensitivity-related illnesses" (SRI). This cluster of chronic inflammatory disorders still lacks validated pathogenetic mechanism, diagnostic biomarkers, and management guidelines. We hypothesized that SRI, not being merely psychogenic, may share organic determinants of impaired detoxification of common physic-chemical stressors. Based on our previous MCS studies, we tested a panel of 12 metabolic blood redox-related parameters and of selected drug-metabolizing-enzyme gene polymorphisms, on 153 EHS, 147 MCS, and 132 control Italians, confirming MCS altered (P < 0.05-0.0001) glutathione-(GSH), GSH-peroxidase/S-transferase, and catalase erythrocyte activities. We first described comparable-though milder-metabolic pro-oxidant/proinflammatory alterations in EHS with distinctively increased plasma coenzyme-Q10 oxidation ratio. Severe depletion of erythrocyte membrane polyunsaturated fatty acids with increased ω 6/ ω 3 ratio was confirmed in MCS, but not in EHS. We also identified significantly (P = 0.003) altered distribution-versus-control of the CYP2C19∗1/∗2 SNP variants in EHS, and a 9.7-fold increased risk (OR: 95% C.I. = 1.3-74.5) of developing EHS for the haplotype (null)GSTT1 + (null)GSTM1 variants. Altogether, results on MCS and EHS strengthen our proposal to adopt this blood metabolic/genetic biomarkers' panel as suitable diagnostic tool for SRI.
    Matched MeSH terms: Multiple Chemical Sensitivity/metabolism*
  2. Malek F, Rani KA, Rahim HA, Omar MH
    Sci Rep, 2015;5:13206.
    PMID: 26286015 DOI: 10.1038/srep13206
    Individuals who report their sensitivity to electromagnetic fields often undergo cognitive impairments that they believe are due to the exposure of mobile phone technology. The aim of this study is to clarify whether short-term exposure at 1 V/m to the typical Global System for Mobile Communication and Universal Mobile Telecommunications System (UMTS) affects cognitive performance and physiological parameters (body temperature, blood pressure and heart rate). This study applies counterbalanced randomizing single blind tests to determine if sensitive individuals experience more negative health effects when they are exposed to base station signals compared with sham (control) individuals. The sample size is 200 subjects with 50.0% Idiopathic Environmental Intolerance attributed to electromagnetic fields (IEI-EMF) also known as sensitive and 50.0% (non-IEI-EMF). The computer-administered Cambridge Neuropsychological Test Automated Battery (CANTAB eclipse(TM)) is used to examine cognitive performance. Four tests are chosen to evaluate Cognitive performance in CANTAB: Reaction Time (RTI), Rapid Visual Processing (RVP), Paired Associates Learning (PAL) and Spatial Span (SSP). Paired sample t-test on the other hand, is used to examine the physiological parameters. Generally, in both groups, there is no statistical significant difference between the exposure and sham exposure towards cognitive performance and physiological effects (P's > 0.05).
    Matched MeSH terms: Multiple Chemical Sensitivity
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links