MATERIAL AND METHODS: A sample of 85 patients diagnosed with superficial bladder tumours was selected to be used in fitting the non-mixture cure model. In order to estimate the parameters of the suggested model, which takes into account the presence of a cure rate, censored data, and covariates, we utilized the maximum likelihood estimation technique using R software version 3.5.7.
RESULT: Upon conducting a comparison of various parametric models fitted to the data, both with and without considering the cure fraction and without incorporating any predictors, the EE distribution yields the lowest AIC, BIC, and HQIC values among all the distributions considered in this study, (1191.921/1198.502, 1201.692/1203.387, 1195.851/1200.467). Furthermore, when considering a non-mixture cure model utilizing the EE distribution along with covariates, an estimated ratio was obtained between the probabilities of being cured for placebo and thiotepa groups (and its 95% confidence intervals) were 0.76130 (0.13914, 6.81863).
CONCLUSION: The findings of this study indicate that EE distribution is the optimal selection for determining the duration of survival in individuals diagnosed with bladder cancer.
METHODS: We identified children ≤ 12 years old hospitalized for COVID-19 across five hospitals in Negeri Sembilan, Malaysia, from 1 January 2021 to 31 December 2021 from the state's pediatric COVID-19 case registration system. The primary outcome was the development of moderate/severe COVID-19 during hospitalization. Multivariate logistic regression was performed to identify independent risk factors for moderate/severe COVID-19. A nomogram was constructed to predict moderate/severe disease. The model performance was evaluated using the area under the curve (AUC), sensitivity, specificity, and accuracy.
RESULTS: A total of 1,717 patients were included. After excluding the asymptomatic cases, 1,234 patients (1,023 mild cases and 211 moderate/severe cases) were used to develop the prediction model. Nine independent risk factors were identified, including the presence of at least one comorbidity, shortness of breath, vomiting, diarrhea, rash, seizures, temperature on arrival, chest recessions, and abnormal breath sounds. The nomogram's sensitivity, specificity, accuracy, and AUC for predicting moderate/severe COVID-19 were 58·1%, 80·5%, 76·8%, and 0·86 (95% CI, 0·79 - 0·92) respectively.
CONCLUSION: Our nomogram, which incorporated readily available clinical parameters, would be useful to facilitate individualized clinical decisions.