Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Loh GO, Tan YT, Peh KK
    Carbohydr Polym, 2014 Jan 30;101:505-10.
    PMID: 24299805 DOI: 10.1016/j.carbpol.2013.09.084
    The effect of hydroxypropyl methylcellulose (HPMC) concentration on β-cyclodextrin (β-CD) solubilization of norfloxacin was examined. The solubility and dissolution of norfloxacin/β-CD and norfloxacin/β-CD/HPMC inclusion complexes were studied. The presence of β-CD increased significantly the solubility and dissolution of norfloxacin. The addition of HPMC until 5% (w/w) improved the solubilization of norfloxacin but further addition above 5% (w/w), decreased norfloxacin solubilization. Fourier transformed Infra-red (FTIR) showed that norfloxacin was successfully included into β-CD. Differential scanning calorimetry (DSC) showed that the norfloxacin endothermic peak shifted to a lower temperature with reduced intensity indicating the formation of inclusion complex. The addition of HPMC reduced further the intensity of norfloxacin endothermic peak. Most of the sharp and intense peaks of norfloxacin disappeared with the addition of HPMC. In conclusion, the concentration of hydrophilic polymer used to enhance β-CD solubilization of poorly soluble drugs is very critical.
    Matched MeSH terms: Methylcellulose/analogs & derivatives*; Methylcellulose/chemistry
  2. Tsuji T, Ono T, Taguchi H, Leong KH, Hayashi Y, Kumada S, et al.
    Chem Pharm Bull (Tokyo), 2023;71(7):576-583.
    PMID: 37394606 DOI: 10.1248/cpb.c23-00214
    Time-domain NMR (TD-NMR) was used for continuous monitoring of the hydration behavior of hydrophilic matrix tablets. The model matrix tablets comprised high molecular weight polyethylene oxide (PEO), hydroxypropyl methylcellulose (HPMC), and polyethylene glycol (PEG). The model tablets were immersed in water. Their T2 relaxation curves were acquired by TD-NMR with solid-echo sequence. A curve-fitting analysis was conducted on the acquired T2 relaxation curves to identify the NMR signals corresponding to the nongelated core remaining in the samples. The amount of nongelated core was estimated from the NMR signal intensity. The estimated values were consistent with the experiment measurement values. Next, the model tablets immersed in water were monitored continuously using TD-NMR. The difference in hydration behaviors of the HPMC and PEO matrix tablets was then characterized fully. The nongelated core of the HPMC matrix tablets disappeared more slowly than that of the PEO matrix tablets. The behavior of HPMC was significantly affected by the PEG content in the tablets. It is suggested that the TD-NMR method has potential to be utilized to evaluate the gel layer properties, upon replacement of the immersion medium: purified (nondeuterated) water is replaced with heavy (deuterated) water. Finally, drug-containing matrix tablets were tested. Diltiazem hydrochloride (a highly water-soluble drug) was employed for this experiment. Reasonable in vitro drug dissolution profiles, which were in accordance with the results from TD-NMR experiments, were observed. We concluded that TD-NMR is a powerful tool to evaluate the hydration properties of hydrophilic matrix tablets.
    Matched MeSH terms: Methylcellulose/chemistry
  3. Aziz SB, Hamsan MH, Abdullah RM, Kadir MFZ
    Molecules, 2019 Jul 09;24(13).
    PMID: 31323966 DOI: 10.3390/molecules24132503
    In the present work, promising proton conducting solid polymer blend electrolytes (SPBEs) composed of chitosan (CS) and methylcellulose (MC) were prepared for electrochemical double-layer capacitor (EDLC) application with a high specific capacitance and energy density. The change in intensity and the broad nature of the XRD pattern of doped samples compared to pure CS:MC system evidencedthe amorphous character of the electrolyte samples. The morphology of the samples in FESEM images supported the amorphous behavior of the solid electrolyte films. The results of impedance and Bode plotindicate that the bulk resistance decreasedwith increasing salt concentration. The highest DC conductivity was found to be 2.81 × 10-3 S/cm. The electrical equivalent circuit (EEC) model was conducted for selected samples to explain the complete picture of the electrical properties.The performance of EDLC cells was examined at room temperature by electrochemical techniques, such as impedance spectroscopy, cyclic voltammetry (CV) and constant current charge-discharge techniques. It was found that the studied samples exhibit a very good performance as electrolyte for EDLC applications. Ions were found to be the dominant charge carriers in the polymer electrolyte. The ion transference number (tion) was found to be 0.84 while 0.16 for electron transference number (tel). Through investigation of linear sweep voltammetry (LSV), the CS:MC:NH4SCN system was found to be electrochemically stable up to 1.8 V. The CV plot revealed no redox peak, indicating the occurrence of charge double-layer at the surface of activated carbon electrodes. Specific capacitance (Cspe) for the fabricated EDLC was calculated using CV plot and charge-discharge analyses. It was found to be 66.3 F g-1 and 69.9 F g-1 (at thefirst cycle), respectively. Equivalent series resistance (Resr) of the EDLC was also identified, ranging from 50.0 to 150.0 Ω. Finally, energy density (Ed) was stabilized to anaverage of 8.63 Wh kg-1 from the 10th cycle to the 100th cycle. The first cycle obtained power density (Pd) of 1666.6 W kg-1 and then itdropped to 747.0 W kg-1 at the 50th cycle and continued to drop to 555.5 W kg-1 as the EDLC completed 100 cycles.
    Matched MeSH terms: Methylcellulose/chemistry
  4. Tirgar M, Jinap S, Zaidul IS, Mirhosseini H
    J Food Sci Technol, 2015 Jul;52(7):4441-9.
    PMID: 26139910 DOI: 10.1007/s13197-014-1515-3
    This study was conducted to screen the most suitable coating material for the production of microencapsulated fish oil powder using ternary blends of maltodextrin (15, 25 % w/w), Arabic gum (2.5, 7.5 % w/w), and methylcellulose (0.5, 1.5 % w/w). The physical properties of fish oil emulsion and encapsulated powders were evaluated. Arabic gum (5 % w/w) showed the most significant (p 
    Matched MeSH terms: Methylcellulose
  5. Peh KK, Wong CF
    J Pharm Pharm Sci, 1999 May-Aug;2(2):53-61.
    PMID: 10952770
    To investigate the suitability of an SCMC (sodium carboxymethyl cellulose/polyethylene glycol 400/carbopol 934P) and an HPMC (hydroxypropylmethyl cellulose/polyethylene glycol 400/carbopol 934P) films as drug vehicle for buccal delivery.
    Matched MeSH terms: Carboxymethylcellulose Sodium/administration & dosage*; Carboxymethylcellulose Sodium/chemistry; Methylcellulose/administration & dosage*; Methylcellulose/analogs & derivatives; Methylcellulose/chemistry
  6. Gan S, Zakaria S, Chia CH, Kaco H, Padzil FN
    Carbohydr Polym, 2014 Jun 15;106:160-5.
    PMID: 24721064 DOI: 10.1016/j.carbpol.2014.01.076
    Cellulose carbamate (CCs) was produced from kenaf core pulp (KCP) using microwave reactor-assisted method. The effects of urea concentration and reaction time on the formation of nitrogen content in CCs were investigated. The CCs' solubility in LiOH/urea system was determined and its membranes were characterized. As the urea content and reaction time increased, the nitrogen content form in CCs increased which enhanced the CCs' solubility. The formation of CCs was confirmed by Fourier transform infrared spectroscopy (FT-IR) and nitrogen content analysis. The CCs' morphology was examined using Scanning electron microscopy (SEM). The cellulose II and crystallinity index of the membranes were confirmed by X-ray diffraction (XRD). The pore size of the membrane displayed upward trend with respect to the urea content observed under Field emission scanning electron microscope (FESEM). This investigation provides a simple and efficient procedure of CCs determination which is useful in producing environmental friendly regenerated CCs.
    Matched MeSH terms: Methylcellulose/analogs & derivatives*; Methylcellulose/chemistry*
  7. Sarker ZI, Elgadir MA, Ferdosh S, Akanda JH, Manap MY, Noda T
    Molecules, 2012;17(5):5733-44.
    PMID: 22628045 DOI: 10.3390/molecules17055733
    The objective of this study was to investigate the effect of selected biopolymers on the rheological properties of surimi. In our paper, we highlight the functional properties and rheological aspects of some starch mixtures used in surimi. However, the influence of some other ingredients, such as cryoprotectants, mannans, and hydroxylpropylmethylcellulose (HPMC), on the rheological properties of surimi is also described. The outcome reveals that storage modulus increased with the addition of higher levels of starch. Moreover, the increasing starch level increased the breaking force, deformation, and gel strength of surimi as a result of the absorption of water by starch granules in the mixture to make the surimi more rigid. On the other hand, the addition of cryoprotectants, mannans, and HPMC improved the rheological properties of surimi. The data obtained in this paper could be beneficial particularly to the scientists who deal with food processing field.
    Matched MeSH terms: Methylcellulose/analogs & derivatives; Methylcellulose/chemistry
  8. Nair A, Gupta R, Vasanti S
    Pharm Dev Technol, 2007;12(6):621-5.
    PMID: 18161635
    The present study is an attempt to formulate a controlled-release matrix tablet formulation for alfuzosin hydrochloride by using low viscous hydroxy propyl methyl cellulose (HPMC K-100 and HPMC 15cps) and its comparison with marketed product. Different batches of tablets containing 10 mg of alfuzosin were prepared by direct compression technique and evaluated for their physical properties, drug content, and in vitro drug release. All the formulations had a good physical integrity, and the drug content between the batches did not vary by more than 1%. Drug release from the matrix tablets was carried out for 12 hr and showed that the release rate was not highly significant with different ratios of HPMC K-100 and HPMC15cps. Similar dissolution profiles were observed between formulation F3 and the marketed product throughout the study period. The calculated regression coefficients showed a higher r2 value with zero-order kinetics and Higuchi model in all the cases. Although both the models could be applicable, zero-order kinetics seems to be better. Hence, it can be concluded that the use of low viscous hydrophilic polymer of different grades (HPMC K-100 and HPMC 15cps) can control the alfuzosin release for a period of 12 hr and was comparable to the marketed product.
    Matched MeSH terms: Methylcellulose/analogs & derivatives*; Methylcellulose/chemistry
  9. Saringat HB, Alfadol KI, Khan GM
    Pak J Pharm Sci, 2005 Jul;18(3):25-38.
    PMID: 16380341
    Coating has been widely used in pharmaceutical manufacture either as non-functional or a functional entity. The objectives of the present study were to investigate the effect of plasticizers such as PEG400, PEG1000 and triacetin on mechanical properties, glass transition temperature and water vapor transmission of free films prepared from HPMC and/or HPMC:PVA blends, to develop suitable coating system for tablets, and to determine the release profiles of the coated tablets. The tensile strength of plasticized HPMC films was generally lower than that of control HPMC film and could be attributed to increased crystallinity and segmental chain mobility of HPMC. This effect increased as the concentration of plasticizer increased. Generally the addition of both grades of polyethylene glycol (PEG400 & PEG1000) increased the moisture permeability of HPMC films but the films containing triacetin provided a more rigid barrier to moisture compared to unplasticized HPMC films. The dissolution profiles of paracetamol tablets coated with 7% w/v HPMC coating-solutions containing PEG400, PEG1000 and triacetin, and those containing PEG400 & PVA together showed that HPMC had weak water resistance. The presence of PEG400 and 1000 in HPMC films further weakened its resistance to solubility while the presence of triacetin caused a little increase in HPMC water resistance. From the results it was concluded that HPMC at 7%w/w concentration was suitable for film-coating intended for non-functional coating. Presence of the PEG 400, PEG1000 and triacetin as well as the presence of PVA and PEG400 together improved the coating properties of HPMC films and made it more suitable as a non-functional coating material.
    Matched MeSH terms: Methylcellulose/analogs & derivatives*; Methylcellulose/chemistry
  10. Wong TW, Deepak KG, Taib MN, Anuar NK
    Int J Pharm, 2007 Oct 1;343(1-2):122-30.
    PMID: 17597317
    The capacity of microwave non-destructive testing (NDT) technique to characterize the matrix property of binary polymeric films for use as transdermal drug delivery system was investigated. Hydroxypropylmethylcellulose (HPMC) and polyethylene glycol (PEG) 3000 were the choice of polymeric matrix and plasticizer, respectively with loratadine as the model drug. Both blank and drug loaded HPMC-PEG 3000 films were prepared using the solvent-evaporation method. These films were conditioned at the relative humidity of 25, 50 and 75% prior to physicochemical characterization using the established methods of ultra-violet spectrophotometry, differential scanning calorimetry and Fourier transform infrared spectroscopy methods, as well as, novel microwave NDT technique. Blank films exhibited a greater propensity of polymer-polymer interaction at the O-H domain upon storage at a lower level of relative humidity, whereas drug loaded films exhibited a greater propensity of polymer-polymer, polymer-plasticizer and/or drug-polymer interaction via the O-H, C-H and/or aromatic C=C functional groups when they were stored at a lower or moderate level of relative humidity. The absorption and transmission characteristics of both blank and drug loaded films for microwave varied with the state of polymer-polymer, polymer-plasticizer, and/or drug-polymer interaction of the matrix. The measurements of microwave NDT test at 8 and 12 GHz were sensitive to the polar fraction of film involving functional group such as O-H moiety and the less polar environment of matrix consisting of functional groups such as C-H and aromatic C=C moieties. The state of interaction between polymer, plasticizer and/or drug of a binary polymeric film can be elucidated through its absorption and transmission profiles of microwave.
    Matched MeSH terms: Methylcellulose/analogs & derivatives*; Methylcellulose/chemistry
  11. Tamilvanan S, Venkatesh Babu R, Nappinai A, Sivaramakrishnan G
    Drug Dev Ind Pharm, 2011 Apr;37(4):436-45.
    PMID: 20923389 DOI: 10.3109/03639045.2010.521161
    Hydrophilic and hydrophobic polymer-based nicorandil (10 mg)-loaded peroral tablets were prepared using the wet granulation technique. The influence of varying amounts of hydroxypropyl methylcellulose (HPMC) (30-50 mg), ethylcellulose (2-4 mg), microcrystalline cellulose (5-20 mg) and Aerosil® (5-12 mg) in conjunction with the constant amounts (3 mg) of glidant and lubricant (magnesium stearate and talc) on the in vitro performances of the tablets (hardness, friability, weight variation, thickness uniformity, drug content, and drug release behavior) were investigated.
    Matched MeSH terms: Methylcellulose/administration & dosage; Methylcellulose/analogs & derivatives
  12. Salam NA, Naeem MA, Malik NS, Riaz M, Shahiq-Uz-Zaman -, Masood-Ur-Rehman -, et al.
    Pak J Pharm Sci, 2020 Jan;33(1(Supplementary)):269-279.
    PMID: 32122858
    The main objective of the present study was to explore the potential of matrix tablets as extended release dosage form of tianeptine, using HMPC K100 as a polymer. HPMC K100 extended the release of the drug from formulation due to the gel-like structure. Direct compression method was adopted to compress the tablets using different concentrations of polymer. Tablets were evaluated for pre-compression and post-compression parameters. Drug release study showed that tablet extends the release of drug with the increasing concentration of polymer. Drug, polymers and tablets were analyzed and/or characterized for compatibility, degradation, thermal stability, amorphous or crystalline nature via FTIR, DSC, TGA, XRD studies. SEM study predicted that tablets had a uniform structure. HPMC K100 based tablets were similar to that of the reference product. Acute toxicity study conducted on Swiss albino mice showed that matrix tablets were safe and non-toxic, as no changes in physical activity and functions of organs were observed. Biochemical and histopathological study revealed lack of any kind of abnormality in liver and renal function. Moreover, necrotic changes were absent at organ level.
    Matched MeSH terms: Methylcellulose/chemical synthesis; Methylcellulose/toxicity
  13. Peh KK, Wong CF
    Drug Dev Ind Pharm, 2000 Jul;26(7):723-30.
    PMID: 10872090
    Controlled-release grade hydroxypropylmethylcellulose (HPMC) or xanthan gum (XG) and microcrystalline cellulose (MCC) were employed to prepare controlled-release diltiazem hydrochloride tablets. The similarity factor f2 was used for dissolution profile comparison using Herbesser 90 SR as a reference product. Drug release could be sustained in a predictable manner by modifying the content of HPMC or XG. Moreover, the drug release profiles of tablets prepared using these matrix materials were not affected by pH and agitation rate. The f2 values showed that only one batch of tablets (of diltiazem HCl, HPMC or XG, and MCC in proportions of 3.0:3.0:4.0) was considered similar to that of the reference product, with values above 50. The unbiased similarity factor f2* values were not much different from the f2 values, ascribing to a small dissolution variance of the test and reference products. The amount of HPMC or XG incorporated to produce tablets with the desired dissolution profile could be determined from the curves of f2 versus polymer content. Hence, the f2 values can be applied as screening and optimization tools during development of controlled-release preparations.
    Matched MeSH terms: Methylcellulose/analogs & derivatives; Methylcellulose/chemistry
  14. Lai WH, Mohamad Yusof Maskat
    Sains Malaysiana, 2018;47:2699-2704.
    This study was carried out to determine the effects of hydroxy propyl methyl cellulose (HPMC) on the flavour compounds
    (eugenol and limonene), moisture and oil content in chicken nuggets during frying. Chicken nugget added with 500
    ppm eugenol and limonene were coated with HPMC solution (0, 0.75 and 1.5%) and then with a commercial coating
    (ADABI, Malaysia). Chicken nuggets were fried at 180o
    C for 4 min. Quantity of eugenol and limonene in the substrate
    (chicken meat) and coating were measured alongwith the moisture and oil content. The results showed that 0.75 and
    1.5% HPMC were not able to retain either eugenol or limonene in both substrate and coating portion of the nuggets
    when compared to control except for eugenol in the substrate portion when using 1.5% HPMC. Application of HPMC
    also resulted in reduced moisture loss and oil absorption. The reduced moisture loss and oil absorption in the coating
    and substrate of the chicken nuggets showed that HPMC was able to form a barrier that restricted the migration of
    moisture from the nuggets and absorption of oil into the nuggets. However, only the 1.5% HPMC barrier formed was
    able to reduce the loss of eugenol in the nugget substrate. Both 0.75 and 1.5% HPMC was not able to significantly
    reduce the loss of limonene during frying.
    Matched MeSH terms: Methylcellulose
  15. Nursyahida Sahli, Nordiana Nabilla Ramly, Muhd Zu Azhan Yahya, Ab Malik Marwan Ali
    MyJurnal
    Solid polymer electrolyte based on methyl cellulose (MC)-lithium triflate (LiCF3SO3) plasticised with ethylene carbonate (EC) was prepared using solution cast technique. The X-ray diffraction (XRD) studies proved that the amorphous nature of the electrolyte systems was increases due to the addition of salt and plasticiser. The improved surface morphology of plasticised polymer system ensures it has good electrode-electrolyte contact during performance testing. The polymer electrolyte was found to have high thermal stability indicating that the electrolyte can be used at higher temperature. The ionic conductivity increased up to 1.24 x 10-4 S cm-1 at optimum amount of EC plasticiser associated to the effect of plasticiser that initially leads to the formation of Li+-EC complex. Consequently, it reduces the fraction of polymer-Li+ complex which contributes to the increase of the segmental chain flexibility in the plasticized system. Temperature dependent studies indicate ionic conductivity increase due to the temperature increase and is in line with Arrhenius behaviour pattern. An activation energy of 0.26 eV at highest conductivity sample was obtained. The addition of plasticiser lowers the activation energy thus increasing the ion mobility of the system and contributing to ionic conductivity increment. The plasticization method is a promising means to dealing with the solid polymer electrolyte problem and producing electrolytes that meet the needs of electrochemical devices.
    Matched MeSH terms: Methylcellulose
  16. Noor Zuhartini Md Muslim, Musa Ahmad, Lee YH, Bahruddin Saad
    Sains Malaysiana, 2018;47:707-713.
    An optical fiber chemical sensor for the determination of free glutamate in food samples was fabricated based on the
    immobilization of 0.1 M copper(II) nitrate trihydrate onto sol-gel glass powder which was then mixed with methyl cellulose
    to form a pellet. A distinctive colour change from light blue to dark blue was observed in the presence of glutamate in
    less than 1 min. The colour change was measured by reflectance spectrophotometer at 691 nm. A linear relationship
    between the reflectance intensity and glutamate concentration was observed in the range of 12.5 to 500 mM with a limit
    of detection of 10.6 mM. This method is also reproducible with a relative standard deviation of less than 5%, no effect on
    pH of the glutamate solution and a good recovery of above 80%. The sensor was used for the determination of glutamate
    in common food items such as soups and flavor enhancers. The results obtained from the fabricated sensor were found
    to be comparable with HPLC method.
    Matched MeSH terms: Methylcellulose
  17. Tan YT, Heng PW, Wan LS
    Pharm Dev Technol, 1999;4(4):561-70.
    PMID: 10578511
    Modified-release drug spheroids coated with an aqueous mixture of high-viscosity hydroxypropylmethylcellulose (HPMC) and sodium carboxymethylcellulose (NaCMC) were formulated. The preparation of core drug spheroids and the coating procedures were performed using the rotary processor and a bottom-spray fluidized bed, respectively. Dissolution studies indicated that incorporation of suitable additives, such as poly(vinylpyrrolidone) (PVP) and poly(ethylene glycol) 400 (PEG) improved the flexibility and integrity of the coat layer by retarding the drug release. An increase in coating levels applied generally retarded the release rate of the drug. However, the ratio of HPMC to NaCMC in the mixed, plasticized polymeric coat played a more dominant role in determining the dissolution T50% values. The optimal ratio of HPMC to NaCMC for prolonged drug release was found to be 3:1, whereas an increase in the amount of NaCMC in the mixed polymer coat only increased drug release. The synergistic viscosity effect of HPMC and NaCMC in retarding drug release rate was greater in distilled water than in dissolution media of pH 1 and 7.2. Cross-sectional view of the scanning electron micrograph showed that all of the coated spheroids exhibited a well-fused, continuous, and distinct layer of coating film. The drug release kinetics followed a biexponential first-order kinetic model.
    Matched MeSH terms: Carboxymethylcellulose Sodium*; Methylcellulose/analogs & derivatives*
  18. Anuar NK, Wui WT, Ghodgaonkar DK, Taib MN
    J Pharm Biomed Anal, 2007 Jan 17;43(2):549-57.
    PMID: 16978823
    The applicability of microwave non-destructive testing (NDT) technique in characterization of matrix property of pharmaceutical films was investigated. Hydroxypropylmethylcellulose and loratadine were selected as model matrix polymer and drug, respectively. Both blank and drug loaded hydroxypropylmethylcellulose films were prepared using the solvent-evaporation method and were conditioned at the relative humidity of 25, 50 and 75% prior to physicochemical characterization using microwave NDT technique as well as ultraviolet spectrophotometry, differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR) techniques. The results indicated that blank hydroxypropylmethylcellulose film exhibited a greater propensity of polymer-polymer interaction at the O-H and C-H domains of the polymer chains upon conditioned at a lower level of relative humidity. In the case of loratadine loaded films, a greater propensity of polymer-polymer and/or drug-polymer interaction via the O-H moiety was mediated in samples conditioned at the lower level of relative humidity, and via the C-H moiety when 50% relative humidity was selected as the condition for sample storage. Apparently, the absorption and transmission characteristics of both blank and drug loaded films for microwave varied with the state of polymer-polymer and/or drug-polymer interaction involving the O-H and C-H moieties. The measurement of microwave NDT test at 8GHz was sensitive to the chemical environment involving O-H moiety while it was greatly governed by the C-H moiety in test conducted at a higher frequency band of microwave. Similar observation was obtained with respect to the profiles of microwave NDT measurements against the state of polymer-polymer and/or drug-polymer interaction of hydroxypropylmethylcellulose films containing chlorpheniramine maleate. The microwave NDT measurement is potentially suitable for use as an apparent indicator of the state of polymer-polymer and drug-polymer interaction of the matrix.
    Matched MeSH terms: Methylcellulose/analogs & derivatives*; Methylcellulose/chemistry
  19. Wong CF, Yuen KH, Peh KK
    Int J Pharm, 1999 Feb 01;178(1):11-22.
    PMID: 10205621
    Controlled release buccal patches were fabricated using Eudragit NE40D and studied. Various bioadhesive polymers, namely hydroxypropylmethyl cellulose, sodium carboxymethyl cellulose and Carbopol of different grades, were incorporated into the patches, to modify their bioadhesive properties as well as the rate of drug release, using metoprolol tartrate as the model drug. The in-vitro drug release was determined using the USP 23 dissolution test apparatus 5 with slight modification, while the bioadhesive properties were evaluated using texture analyzer equipment with chicken pouch as the model tissue. The incorporation of hydrophilic polymers was found to affect the drug release as well as enhance the bioadhesiveness. Although high viscosity polymers can enhance the bioadhesiveness of the patches, they also tend to cause non-homogeneous distribution of the polymers and drug, resulting in non-predictable drug-release rates. Of the various bioadhesive polymers studied, Cekol 700 appeared to be most satisfactory in terms of modifying the drug release and enhancement of the bioadhesive properties.
    Matched MeSH terms: Carboxymethylcellulose Sodium/chemistry; Methylcellulose/analogs & derivatives; Methylcellulose/chemistry
  20. Djaeni M, Prasetyaningrum A, Sasongko SB, Widayat W, Hii CL
    J Food Sci Technol, 2015 Feb;52(2):1170-5.
    PMID: 25694735 DOI: 10.1007/s13197-013-1081-0
    Drying is a significant step in the production of carrageenan. However, current drying process still deals with too long drying time and carrageenan quality degradation. The foam mat drying is an option to speed up drying process as well as retaining carrageenan quality. In this case, the carrageenan was mixed with egg white (albumin) as foaming agent and methyl cellulose for foam stabilizer. The foam will break the carrageenan gels and creates the porous structure resulting higher surface area for water transfer. This research studied the effect of egg white and methyl cellulose on carrageenan drying at various air temperature, and thickness. As a response, the water content versus time was observed and the drying rate was estimated. Meanwhile, the carrageenan texture was verified by X-RD (X-Ray Diffraction) and TEM (Transmission Electron Microscopy). Results showed that the presence of egg white stablized by methyl cellulose can speed up drying rate as well as retaining the crystalline structure of carrageenan. The higher albumin content, the faster drying rate. However, the addition of albumin and methyl cellulose restricted not more than 30 % in the mixture for keeping carrageenan quality and purity. By adding egg white 20 % and methyl cellulose 10 %, the water diffusion and drying rate can be two fold compared with carrageenan drying without foam. The improvement can be higher at the higher temperature and thinner carrageenan sheets.
    Matched MeSH terms: Methylcellulose
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links