Displaying publications 1 - 20 of 77 in total

Abstract:
Sort:
  1. Ding SSL, Subbiah SK, Khan MSA, Farhana A, Mok PL
    Int J Mol Sci, 2019 Apr 10;20(7).
    PMID: 30974904 DOI: 10.3390/ijms20071784
    Multipotent mesenchymal stem cells (MSCs) have been employed in numerous pre-clinical and clinical settings for various diseases. MSCs have been used in treating degenerative disorders pertaining to the eye, for example, age-related macular degeneration, glaucoma, retinitis pigmentosa, diabetic retinopathy, and optic neuritis. Despite the known therapeutic role and mechanisms of MSCs, low cell precision towards the targeted area and cell survivability at tissue needing repair often resulted in a disparity in therapeutic outcomes. In this review, we will discuss the current and feasible strategy options to enhance treatment outcomes with MSC therapy. We will review the application of various types of biomaterials and advances in nanotechnology, which have been employed on MSCs to augment cellular function and differentiation for improving treatment of visual functions. In addition, several modes of gene delivery into MSCs and the types of associated therapeutic genes that are important for modulation of ocular tissue function and repair will be highlighted.
    Matched MeSH terms: Mesenchymal Stromal Cells/metabolism*
  2. Sarmadi VH, Tong CK, Vidyadaran S, Abdullah M, Seow HF, Ramasamy R
    Med J Malaysia, 2010 Sep;65(3):209-14.
    PMID: 21939170
    We have previously shown that mesenchymal stem cells (MSC) inhibit tumour cell proliferation, thus promising a novel therapy for treating cancers. In this study, MSC were generated from human bone marrow samples and characterised based on standard immunophenotyping. When MSC were co-cultured with BV173 and Jurkat tumour cells, the proliferation of tumour cells were profoundly inhibited in a dose dependent manner mainly via cell to cell contact interaction. Further cell cycle analysis reveals that MSC arrest tumour cell proliferation in G0/G1 phase of cell cycle thus preventing the entry of tumour cells into S phase of cell cycle.
    Matched MeSH terms: Mesenchymal Stromal Cells/metabolism
  3. Muhammad SA, Nordin N, Mehat MZ, Fakurazi S
    Cell Tissue Res, 2019 Feb;375(2):329-344.
    PMID: 30084022 DOI: 10.1007/s00441-018-2884-0
    Articular cartilage defect remains the most challenging joint disease due to limited intrinsic healing capacity of the cartilage that most often progresses to osteoarthritis. In recent years, stem cell therapy has evolved as therapeutic strategies for articular cartilage regeneration. However, a number of studies have shown that therapeutic efficacy of stem cell transplantation is attributed to multiple secreted factors that modulate the surrounding milieu to evoke reparative processes. This systematic review and meta-analysis aim to evaluate and compare the therapeutic efficacy of stem cell and secretome in articular cartilage regeneration in animal models. We systematically searched the PubMed, CINAHL, Cochrane Library, Ovid Medline and Scopus databases until August 2017 using search terms related to stem cells, cartilage regeneration and animals. A random effect meta-analysis of the included studies was performed to assess the treatment effects on new cartilage formation on an absolute score of 0-100% scale. Subgroup analyses were also performed by sorting studies independently based on similar characteristics. The pooled analysis of 59 studies that utilized stem cells significantly improved new cartilage formation by 25.99% as compared with control. Similarly, the secretome also significantly increased cartilage regeneration by 26.08% in comparison to the control. Subgroup analyses revealed no significant difference in the effect of stem cells in new cartilage formation. However, there was a significant decline in the effect of stem cells in articular cartilage regeneration during long-term follow-up, suggesting that the duration of follow-up is a predictor of new cartilage formation. Secretome has shown a similar effect to stem cells in new cartilage formation. The risk of bias assessment showed poor reporting for most studies thereby limiting the actual risk of bias assessment. The present study suggests that both stem cells and secretome interventions improve cartilage regeneration in animal trials. Graphical abstract ᅟ.
    Matched MeSH terms: Mesenchymal Stromal Cells/metabolism*
  4. Huang CJ, Nguyen PN, Choo KB, Sugii S, Wee K, Cheong SK, et al.
    Int J Med Sci, 2014;11(8):824-33.
    PMID: 24936146 DOI: 10.7150/ijms.8358
    A miRNA precursor generally gives rise to one major miRNA species derived from the 5' arm, and are called miRNA-5p. However, more recent studies have shown co-expression of miRNA-5p and -3p, albeit in different concentrations, in cancer cells targeting different sets of transcripts. Co-expression and regulation of the -5p and -3p miRNA species in stem cells, particularly in the reprogramming process, have not been studied.
    Matched MeSH terms: Mesenchymal Stromal Cells/metabolism*
  5. Mok PL, Cheong SK, Leong CF
    Malays J Pathol, 2008 Jun;30(1):11-9.
    PMID: 19108406 MyJurnal
    Mesenchymal stem cells are pluripotent progenitors that could be found in human bone marrow. Mesenchymal stem cells are capable of renewing themselves without differentiation in long-term culture. These cells also have low immunogenicity and can suppress alloreactive T cell responses. In the current study, mesenchymal stem cells isolated and propagated previously from the bone marrow of a megaloblastic anaemia patient were tested for their capabilities to differentiate into adipocytes, chondrocytes and osteoblasts in vitro. The differentiated cells were determined by Oil Red O, Alcian Blue-PAS and Alizarin Red S staining, and reverse transcriptase-polymerase chain reaction to determine the expression of mRNA specific for adipogenesis, chondrogenesis and osteogenesis. The results showed that the fibroblast-like cells were capable of differentiating into adipocytes, chondrocytes and osteoblasts upon chemical induction. The adipocytes, chondrocytes and osteoblasts were stained positively to Oil Red O, Alcian Blue-PAS and Alizarin Red S respectively. The differentiated cells were also found to express mRNA specific for adipogenesis ('peroxisome proliferation-activated receptor gamma2' and lipoprotein lipase), chondrogenesis (collagen type II) and osteogenesis (osteocalcin, osteopontin and alkaline phosphatase). In conclusion, this research has successfully isolated fibroblast-like cells from human bone marrow and these cells demonstrated morphological, cytochemical and immunochemical characteristics similar to mesenchymal stem cells. These cells maintain their proliferative properties and could be differentiated into the mesoderm lineage. The success of this study is vital because mesenchymal stem cells can be used in cellular therapy to regenerate or replace damaged tissues, or as a vehicle for therapeutic gene delivery in the future.
    Matched MeSH terms: Mesenchymal Stromal Cells/metabolism
  6. Yong KW, Safwani WKZW, Xu F, Zhang X, Choi JR, Abas WABW, et al.
    J Tissue Eng Regen Med, 2017 08;11(8):2217-2226.
    PMID: 26756982 DOI: 10.1002/term.2120
    Cryopreservation represents an efficient way to preserve human mesenchymal stem cells (hMSCs) at early culture/passage, and allows pooling of cells to achieve sufficient cells required for off-the-shelf use in clinical applications, e.g. cell-based therapies and regenerative medicine. To fully apply cryopreserved hMSCs in a clinical setting, it is necessary to evaluate their biosafety, e.g. chromosomal abnormality and tumourigenic potential. To date, many studies have demonstrated that cryopreserved hMSCs display no chromosomal abnormalities. However, the tumourigenic potential of cryopreserved hMSCs has not yet been evaluated. In the present study, we cryopreserved human adipose-derived mesenchymal stem cells (hASCs) for 3 months, using a slow freezing method with various cryoprotective agents (CPAs), followed by assessment of the tumourigenic potential of the cryopreserved hASCs after thawing and subculture. We found that long-term cryopreserved hASCs maintained normal levels of the tumour suppressor markers p53, p21, p16 and pRb, hTERT, telomerase activity and telomere length. Further, we did not observe significant DNA damage or signs of p53 mutation in cryopreserved hASCs. Our findings suggest that long-term cryopreserved hASCs are at low risk of tumourigenesis. These findings aid in establishing the biosafety profile of cryopreserved hASCs, and thus establishing low hazardous risk perception with the use of long-term cryopreserved hASCs for future clinical applications. Copyright © 2016 John Wiley & Sons, Ltd.
    Matched MeSH terms: Mesenchymal Stromal Cells/metabolism*
  7. Halim NS, Aizat WM, Yahaya BH
    Regen Med, 2019 01;14(1):15-31.
    PMID: 30566028 DOI: 10.2217/rme-2018-0020
    AIM: This study was aimed to investigate the effect of mesenchymal stem cell (MSC)-secreted factors on airway repair.

    MATERIALS & METHODS: An indirect in vitro coculture model of injured airway epithelium explant with MSCs was developed. LC-MS/MS analysis was performed to determine factors secreted by MSCs and their involvement in epithelium repair was evaluated by histopathological assessment.

    RESULTS: The identification of 54 of MSC proteins of which 44 of them were secretory/extracellular proteins. 43 of the secreted proteins were found to be involved in accelerating airway epithelium repair by stimulating the migratory, proliferative and differentiation abilities of the endogenous repair mechanisms. MSC-secreted proteins also initiated epithelial-mesenchymal transition process during early repair.

    CONCLUSION: MSC-secreted factors accelerated airway epithelial repair by stimulating the endogenous reparative and regenerative ability of lung cells.

    Matched MeSH terms: Mesenchymal Stromal Cells/metabolism*
  8. Maqbool M, Vidyadaran S, George E, Ramasamy R
    Cell Biol Int, 2011 Dec;35(12):1247-51.
    PMID: 21649586 DOI: 10.1042/CBI20110070
    We have previously shown that human MSC (mesenchymal stem cells) inhibit the proliferation of most of the immune cells. However, there are innate immune cells such as neutrophils and other PMN (polymorphonuclear) cells that do not require an extensive proliferation prior to their effector function. In this study, the effect of MSC on neutrophils in the presence of complete and serum-deprived culture media was investigated. In the presence of MSC, the viability of neutrophils increase as measured in 24 h of incubation at various supplementation of serum concentration. We have utilized Annexin V and PI (propidium iodide) staining to confirm whether the enhancement of neutrophil's viability is due to a reduction in PCD (programmed cell death). MSC significantly rescue neutrophils from apoptosis at 1, 5 and 10% of FBS (fetal bovine serum) supplementation. The fractions of viable and dead cells were increased and decreased respectively in the presence of MSC. Our results indicate MSC rescue neutrophils from nutrient- or serum-deprived cell death. However, whether this effect is exerted through a specific signalling pathway or confining neutrophils in resting state by MSC requires further investigation.
    Matched MeSH terms: Mesenchymal Stromal Cells/metabolism*
  9. Hossain MM, Murali MR, Kamarul T
    Life Sci, 2017 Aug 01;182:50-56.
    PMID: 28606849 DOI: 10.1016/j.lfs.2017.06.007
    AIMS: Mesenchymal stem/stromal cells (MSCs) hold promises for the treatment of diverse diseases and regeneration of injured tissues. Genetic modification of MSCs through gene delivery might enhance their therapeutic potential. Adiponectin has been appeared as a potential biomarker for predicting various diseases. Plasma adiponectin levels are negatively correlated with various metabolic and vascular diseases and supplementation of exogenous adiponectin ameliorates the diseases. This study aims to develop adiponectin secreting genetically modified MSCs (GM-MSCs) as a potent strategic tool to complement endogenous adiponectin for the treatment of adiponectin deficiency diseases.

    MAIN METHODS: Human bone marrow derived MSCs were isolated, expanded in vitro and transfected with adiponectin gene containing plasmid vector. Total RNA was extracted and cDNA was prepared by reverse transcription polymerase chain reaction (RT-PCR). The expression of adiponectin gene and protein in GM-MSCs was analyzed by PCR and Western blotting respectively. The secretion of adiponectin protein from GM-MSCs was analyzed by enzyme-linked immunosorbent assay.

    KEY FINDINGS: The expression of adiponectin gene and plasmid DNA was detected in GM-MSCs but not in control group of MSCs. Adiponectin gene expression was detected in GM-MSCs at 2, 7, 14, 21 and 28days after transfection. Western blotting analysis revealed the expression of adiponectin protein only in GM-MSCs. The GM-MSCs stably secreted adiponectin protein into culture media at least for 4weeks.

    SIGNIFICANCE: GM-MSCs express and secret adiponectin protein. Therefore, these adiponectin secreting GM-MSCs could be instrumental for the supplementation of adiponectin in the treatment of adiponectin deficiency related diseases.

    Matched MeSH terms: Mesenchymal Stromal Cells/metabolism*
  10. Sulaiman S, Chowdhury SR, Fauzi MB, Rani RA, Yahaya NHM, Tabata Y, et al.
    Int J Mol Sci, 2020 Apr 13;21(8).
    PMID: 32294921 DOI: 10.3390/ijms21082688
    Recent advancement in cartilage tissue engineering has explored the potential of 3D culture to mimic the in vivo environment of human cartilaginous tissue. Three-dimensional culture using microspheres was described to play a role in driving the differentiation of mesenchymal stem cells to chondrocyte lineage. However, factors such as mechanical agitation on cell chondrogenesis during culture on the microspheres has yet to be elucidated. In this study, we compared the 2D and 3D culture of bone-marrow-derived mesenchymal stem cells (BMSCs) on gelatin microspheres (GMs) in terms of MSC stemness properties, immune-phenotype, multilineage differentiation properties, and proliferation rate. Then, to study the effect of mechanical agitation on chondrogenic differentiation in 3D culture, we cultured BMSCs on GM (BMSCs-GM) in either static or dynamic bioreactor system with two different mediums, i.e., F12: DMEM (1:1) + 10% FBS (FD) and chondrogenic induction medium (CIM). Our results show that BMSCs attached to the GM surface and remained viable in 3D culture. BMSCs-GM proliferated faster and displayed higher stemness properties than BMSCs on a tissue culture plate (BMSCs-TCP). GMs also enhanced the efficiency of in-vitro chondrogenesis of BMSCs, especially in a dynamic culture with higher cell proliferation, RNA expression, and protein expression compared to that in a static culture. To conclude, our results indicate that the 3D culture of BMSCs on gelatin microsphere was superior to 2D culture on a standard tissue culture plate. Furthermore, culturing BMSCs on GM in dynamic culture conditions enhanced their chondrogenic differentiation.
    Matched MeSH terms: Mesenchymal Stromal Cells/metabolism
  11. Parate D, Franco-Obregón A, Fröhlich J, Beyer C, Abbas AA, Kamarul T, et al.
    Sci Rep, 2017 08 25;7(1):9421.
    PMID: 28842627 DOI: 10.1038/s41598-017-09892-w
    Pulse electromagnetic fields (PEMFs) have been shown to recruit calcium-signaling cascades common to chondrogenesis. Here we document the effects of specified PEMF parameters over mesenchymal stem cells (MSC) chondrogenic differentiation. MSCs undergoing chondrogenesis are preferentially responsive to an electromagnetic efficacy window defined by field amplitude, duration and frequency of exposure. Contrary to conventional practice of administering prolonged and repetitive exposures to PEMFs, optimal chondrogenic outcome is achieved in response to brief (10 minutes), low intensity (2 mT) exposure to 6 ms bursts of magnetic pulses, at 15 Hz, administered only once at the onset of chondrogenic induction. By contrast, repeated exposures diminished chondrogenic outcome and could be attributed to calcium entry after the initial induction. Transient receptor potential (TRP) channels appear to mediate these aspects of PEMF stimulation, serving as a conduit for extracellular calcium. Preventing calcium entry during the repeated PEMF exposure with the co-administration of EGTA or TRP channel antagonists precluded the inhibition of differentiation. This study highlights the intricacies of calcium homeostasis during early chondrogenesis and the constraints that are placed on PEMF-based therapeutic strategies aimed at promoting MSC chondrogenesis. The demonstrated efficacy of our optimized PEMF regimens has clear clinical implications for future regenerative strategies for cartilage.
    Matched MeSH terms: Mesenchymal Stromal Cells/metabolism*
  12. Wu Y, Yang Z, Law JB, He AY, Abbas AA, Denslin V, et al.
    Tissue Eng Part A, 2017 01;23(1-2):43-54.
    PMID: 27824280 DOI: 10.1089/ten.TEA.2016.0123
    Stem cell differentiation is guided by contact with the physical microenvironment, influence by both topography and mechanical properties of the matrix. In this study, the combined effect of substratum nano-topography and mechanical stiffness in directing mesenchymal stem cell (MSC) chondrogenesis was investigated. Three polyesters of varying stiffness were thermally imprinted to create nano-grating or pillar patterns of the same dimension. The surface of the nano-patterned substrate was coated with chondroitin sulfate (CS) to provide an even surface chemistry, with cell-adhesive and chondro-inductive properties, across all polymeric substrates. The surface characteristic, mechanical modulus, and degradation of the CS-coated patterned polymeric substrates were analyzed. The cell morphology adopted on the nano-topographic surfaces were accounted by F-actin distribution, and correlated to the cell proliferation and chondrogenic differentiation outcomes. Results show that substratum stiffness and topographical cues affected MSC morphology and aggregation, and influenced the phenotypic development at the earlier stage of chondrogenic differentiation. Hyaline-like cartilage with middle/deep zone cartilage characteristics was generated on softer pillar surface, while on stiffer nano-pillar material MSCs showed potential to generate constituents of hyaline/fibro/hypertrophic cartilage. Fibro/superficial zone-like cartilage could be derived from nano-grating of softer stiffness, while stiffer nano-grating resulted in insignificant chondrogenesis. This study demonstrates the possibility of refining the phenotype of cartilage generated from MSCs by manipulating surface topography and material stiffness.
    Matched MeSH terms: Mesenchymal Stromal Cells/metabolism*
  13. Sun Y, Lu Y, Li X, He Y, Yong TK, Keng CS, et al.
    Cell Death Dis, 2024 Aug 28;15(8):632.
    PMID: 39198434 DOI: 10.1038/s41419-024-07008-7
    In the process of tumor treatment, systemic drug administration is hindered by biological barriers, leading to the retention of a large number of drug molecules in healthy tissues and causing unavoidable side effects. The precise deployment of drugs at the tumor site is expected to alleviate this phenomenon. Here, we take endostatin and Her2 (+) tumors as examples and develop an intelligent drug with simple "wisdom" by endowing mesenchymal stem cells (MSCs) with an intelligent response program (iMSCEndostatin). It can autonomously perceive and distinguish tumor cells from non-tumor cells, establishing a logical connection between tumor signals and drug release. Enable it to selectively deploy drugs at the tumor site, thereby locking the toxicity of drugs at the tumor site. Unlike traditional aggressive targeting strategies that aim to increase drug concentration at the lesion, intelligent drugs are more inclined to be defensive strategies that prevent the presence of drugs in healthy tissues.
    Matched MeSH terms: Mesenchymal Stromal Cells/metabolism
  14. Abdul Halim NS, Fakiruddin KS, Ali SA, Yahaya BH
    Int J Mol Sci, 2014;15(9):15044-60.
    PMID: 25162825 DOI: 10.3390/ijms150915044
    Mesenchymal stem cells (MSCs) hold tremendous potential for therapeutic use in stem cell-based gene therapy. Ex vivo genetic modification of MSCs with beneficial genes of interest is a prerequisite for successful use of stem cell-based therapeutic applications. However, genetic manipulation of MSCs is challenging because they are resistant to commonly used methods to introduce exogenous DNA or RNA. Herein we compared the effectiveness of several techniques (classic calcium phosphate precipitation, cationic polymer, and standard electroporation) with that of microporation technology to introduce the plasmid encoding for angiopoietin-1 (ANGPT-1) and enhanced green fluorescent protein (eGFP) into human adipose-derived MSCs (hAD-MSCs). The microporation technique had a higher transfection efficiency, with up to 50% of the viable hAD-MSCs being transfected, compared to the other transfection techniques, for which less than 1% of cells were positive for eGFP expression following transfection. The capability of cells to proliferate and differentiate into three major lineages (chondrocytes, adipocytes, and osteocytes) was found to be independent of the technique used for transfection. These results show that the microporation technique is superior to the others in terms of its ability to transfect hAD-MSCs without affecting their proliferation and differentiation capabilities. Therefore, this study provides a foundation for the selection of techniques when using ex vivo gene manipulation for cell-based gene therapy with MSCs as the vehicle for gene delivery.
    Matched MeSH terms: Mesenchymal Stromal Cells/metabolism*
  15. Yap FL, Cheong SK, Ammu R, Leong CF
    Malays J Pathol, 2009 Dec;31(2):113-20.
    PMID: 20514854 MyJurnal
    In this study, we evaluated the biological properties of human mesenchymal stem cells transfected (hMSC) with a plasmid vector expressing human cytokine interleukin-12 (IL-12). Surface markers were analysed by immunophenotyping using flow cytometry. Differentiation capability was evaluated towards adipogenesis and osteogenesis. We demonstrated that successfully transfected hMSC retained their surface immunophenotypes and differentiation potential into adipocytes and osteocytes. These results indicate that hMSC may be a suitable vehicle for gene transduction.
    Matched MeSH terms: Mesenchymal Stromal Cells/metabolism
  16. Abu Kasim NH, Govindasamy V, Gnanasegaran N, Musa S, Pradeep PJ, Srijaya TC, et al.
    J Tissue Eng Regen Med, 2015 Dec;9(12):E252-66.
    PMID: 23229816 DOI: 10.1002/term.1663
    The discovery of mesenchymal stem cells (MSCs) from a myriad of tissues has triggered the initiative of establishing tailor-made stem cells for disease-specific therapy. Nevertheless, lack of understanding on the inherent differential propensities of these cells may restrict their clinical outcome. Therefore, a comprehensive study was done to compare the proliferation, differentiation, expression of cell surface markers and gene profiling of stem cells isolated from different sources, viz. bone marrow, Wharton's jelly, adipose tissue and dental pulp. We found that although all MSCs were phenotypically similar to each other, Wharton's jelly (WJ) MSCs and dental pulp stem cells (DPSCs) were highly proliferative as compared to bone marrow (BM) MSCs and adipose tissue (AD) MSCs. Moreover, indistinguishable cell surface characteristics and differentiation capacity were confirmed to be similar among all cell types. Based on gene expression profiling, we postulate that BM-MSCs constitutively expressed genes related to inflammation and immunodulation, whereas genes implicated in tissue development were highly expressed in AD-MSCs. Furthermore, the transcriptome profiling of WJ-MSCs and DPSCs revealed an inherent bias towards the neuro-ectoderm lineage. Based on our findings, we believe that there is no unique master mesenchymal stem cell that is appropriate to treat all target diseases. More precisely, MSCs from different sources exhibit distinct and unique gene expression signatures that make them competent to give rise to specific lineages rather than others. Therefore, stem cells should be subjected to rigorous characterization and utmost vigilance needs to be adopted in order to choose the best cellular source for a particular disease.
    Matched MeSH terms: Mesenchymal Stromal Cells/metabolism*
  17. Aziz J, Abu Kassim NL, Abu Kasim NH, Haque N, Rahman MT
    PMID: 26152209 DOI: 10.1186/s12906-015-0749-6
    Use of Carica papaya leaf extracts, reported to improve thrombocyte counts in dengue patients, demands further analysis on the underlying mechanism of its thrombopoietic cytokines induction
    Matched MeSH terms: Mesenchymal Stromal Cells/metabolism
  18. Ezhilarasu H, Sadiq A, Ratheesh G, Sridhar S, Ramakrishna S, Ab Rahim MH, et al.
    Nanomedicine (Lond), 2019 01;14(2):201-214.
    PMID: 30526272 DOI: 10.2217/nnm-2018-0271
    AIM: Atherosclerosis is a common cardiovascular disease causing medical problems globally leading to coronary artery bypass surgery. The present study is to fabricate core/shell nanofibers to encapsulate VEGF for the differentiation of mesenchymal stem cells (MSCs) into smooth muscle cells to develop vascular grafts.

    MATERIALS & METHODS: The fabricated core/shell nanofibers contained polycaprolactone/gelatin as the shell, and silk fibroin/VEGF as the core materials.

    RESULTS: The results observed that the core/shell nanofibers interact to differentiate MSCs into smooth muscle cells by the expression of vascular smooth muscle cell (VSMC) contractile proteins α-actinin, myosin and F-actin.

    CONCLUSION: The functionalized polycaprolactone/gelatin/silk fibroin/VEGF (250 ng) core/shell nanofibers were fabricated for the controlled release of VEGF in a persistent manner for the differentiation of MSCs into smooth muscle cells for vascular tissue engineering.

    Matched MeSH terms: Mesenchymal Stromal Cells/metabolism
  19. Wong CY, Chang YM, Tsai YS, Ng WV, Cheong SK, Chang TY, et al.
    BMC Genomics, 2020 Jul 07;21(1):467.
    PMID: 32635896 DOI: 10.1186/s12864-020-06868-5
    BACKGROUND: Mesangial cells play an important role in the glomerulus to provide mechanical support and maintaine efficient ultrafiltration of renal plasma. Loss of mesangial cells due to pathologic conditions may lead to impaired renal function. Mesenchymal stem cells (MSC) can differentiate into many cell types, including mesangial cells. However transcriptomic profiling during MSC differentiation into mesangial cells had not been studied yet. The aim of this study is to examine the pattern of transcriptomic changes during MSC differentiation into mesangial cells, to understand the involvement of transcription factor (TF) along the differentiation process, and finally to elucidate the relationship among TF-TF and TF-key gene or biomarkers during the differentiation of MSC into mesangial cells.

    RESULTS: Several ascending and descending monotonic key genes were identified by Monotonic Feature Selector. The identified descending monotonic key genes are related to stemness or regulation of cell cycle while ascending monotonic key genes are associated with the functions of mesangial cells. The TFs were arranged in a co-expression network in order of time by Time-Ordered Gene Co-expression Network (TO-GCN) analysis. TO-GCN analysis can classify the differentiation process into three stages: differentiation preparation, differentiation initiation and maturation. Furthermore, it can also explore TF-TF-key genes regulatory relationships in the muscle contraction process.

    CONCLUSIONS: A systematic analysis for transcriptomic profiling of MSC differentiation into mesangial cells has been established. Key genes or biomarkers, TFs and pathways involved in differentiation of MSC-mesangial cells have been identified and the related biological implications have been discussed. Finally, we further elucidated for the first time the three main stages of mesangial cell differentiation, and the regulatory relationships between TF-TF-key genes involved in the muscle contraction process. Through this study, we have increased fundamental understanding of the gene transcripts during the differentiation of MSC into mesangial cells.

    Matched MeSH terms: Mesenchymal Stromal Cells/metabolism*
  20. Lan YW, Chen CM, Chong KY
    Methods Mol Biol, 2021;2269:83-92.
    PMID: 33687673 DOI: 10.1007/978-1-0716-1225-5_6
    A co-culture model of mesenchymal stem cells (MSCs) and fibroblasts is an efficient and rapid method to evaluate the anti-fibrotic effects of MSCs-based cell therapy. Transforming growth factor (TGF)-β1 plays a key role in promotion of fibroblast activation and differentiation which can induce collagen deposition, increase ECM production in lung tissue, eventually resulted in pulmonary fibrosis. Here, we use this co-culture system and examine the ECM production in activated fibroblasts by western blot and quantitative real-time analysis to understand the therapeutic effects of MSCs.
    Matched MeSH terms: Mesenchymal Stromal Cells/metabolism*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links