Displaying all 10 publications

Abstract:
Sort:
  1. Zakaria R, Wan Yaacob WM, Othman Z, Long I, Ahmad AH, Al-Rahbi B
    Physiol Res, 2017 09 22;66(4):553-565.
    PMID: 28406691
    Alzheimer's disease (AD) is a primary cause of dementia in the middle-aged and elderly worldwide. Animal models for AD are widely used to study the disease mechanisms as well as to test potential therapeutic agents for disease modification. Among the non-genetically manipulated neuroinflammation models for AD, lipopolysaccharide (LPS)-induced animal model is commonly used. This review paper aims to discuss the possible factors that influence rats' response following LPS injection. Factors such as dose of LPS, route of administration, nature and duration of exposure as well as age and gender of animal used should be taken into account when designing a study using LPS-induced memory impairment as model for AD.
    Matched MeSH terms: Memory Disorders/chemically induced*
  2. Tang KS
    Life Sci, 2019 Sep 15;233:116695.
    PMID: 31351082 DOI: 10.1016/j.lfs.2019.116695
    Alzheimer's disease (AD) is neurodegenerative disorder that is associated with memory and cognitive decline in the older adults. Scopolamine is commonly used as a behavioral model in studying cognitive disorders including AD. Many studies have also concurrently examined the neurochemical mechanisms underlying the behavioral modifications by scopolamine treatment. Nonetheless, the scopolamine model has not become a standard tool in the early assessment of drugs. Furthermore, the use of scopolamine as a pharmacological model to study AD remains debatable. This report reviews the scopolamine-induced cellular and molecular changes and discusses how these changes relate to AD pathogenesis.
    Matched MeSH terms: Memory Disorders/chemically induced
  3. Safdar A, Zakaria R, Aziz CBA, Rashid U, Azman KF
    Biogerontology, 2020 04;21(2):203-216.
    PMID: 31792648 DOI: 10.1007/s10522-019-09854-x
    One of the most significant hallmarks of aging is cognitive decline. D-galactose administration may impair memory and mimic the effects of natural aging. In this study, the efficiency of goat milk to protect against memory decline was tested. Fifty-two male Sprague-Dawley rats were randomly divided into four groups: (i) control group, (ii) goat milk treated group, (iii) D-galactose treated group, and (iv) goat milk plus D-galactose treated group. Subcutaneous injections of D-galactose at 120 mg/kg and oral administrations of goat milk at 1 g/kg were chosen for the study. Goat milk and D-galactose were administered concomitantly for 6 weeks, while the control group received saline. After 6 weeks, novel object recognition and T-maze tests were performed to evaluate memory of rats. Following behavioral tests, the animals were sacrificed, and right brain homogenates were analyzed for levels of lipid peroxidation, antioxidant enzymes and neurotrophic factors. The left brain hemisphere was used for histological study of prefrontal cortex and hippocampus. There was a significant memory impairment, an increase in oxidative stress and neurodegeneration and a reduction in antioxidant enzymes and neurotrophic factors levels in the brain of D-galactose treated rats compared to controls. Goat milk treatment attenuated memory impairment induced by D-galactose via suppressing oxidative stress and neuronal damage and increasing neurotrophic factors levels, thereby suggesting its potential role as a geroprotective food.
    Matched MeSH terms: Memory Disorders/chemically induced
  4. Sivalingam M, Ogawa S, Parhar IS
    Sci Rep, 2020 11 11;10(1):19569.
    PMID: 33177592 DOI: 10.1038/s41598-020-76287-9
    The habenula is an evolutionarily conserved brain structure, which has recently been implicated in fear memory. In the zebrafish, kisspeptin (Kiss1) is predominantly expressed in the habenula, which has been implicated as a modulator of fear response. Hence, in the present study, we questioned whether Kiss1 has a role in fear memory and morphine-induced fear memory impairment using an odorant cue (alarm substances, AS)-induced fear avoidance paradigm in adult zebrafish, whereby the fear-conditioned memory can be assessed by a change of basal place preference (= avoidance) of fish due to AS-induced fear experience. Subsequently, to examine the possible role of Kiss1 neurons-serotonergic pathway, kiss1 mRNA and serotonin levels were measured. AS exposure triggered fear episodes and fear-conditioned place avoidance. Morphine treatment followed by AS exposure, significantly impaired fear memory with increased time-spent in AS-paired compartment. However, fish administered with Kiss1 (10-21 mol/fish) after morphine treatment had significantly lower kiss1 mRNA levels but retained fear memory. In addition, the total brain serotonin levels were significantly increased in AS- and Kiss1-treated groups as compared to control and morphine treated group. These results suggest that habenular Kiss1 might be involved in consolidation or retrieval of fear memory through the serotonin system.
    Matched MeSH terms: Memory Disorders/chemically induced
  5. Zain MA, Rouhollahi E, Pandy V, Mani V, Majeed ABA, Wong WF, et al.
    Exp Anim, 2018 Nov 01;67(4):421-429.
    PMID: 29731492 DOI: 10.1538/expanim.18-0006
    Phencyclidine (PCP) has been used to model cognitive deficits related to schizophrenia in rats and mice. However, the model in mice is not consistent in terms of the PCP effective dose reported. Furthermore, most of the previous studies in mice excluded the presence of drug washout period in the regime. Thus, we aimed to optimize the dose of PCP in producing robust cognitive deficits by implementing it in a PCP regime which incorporates a drug washout period. The regimen used was 7 days' daily injection of PCP or saline for treatment and vehicle groups, respectively; followed by 24 h drug washout period. After the washout period, the test mice were tested in water maze (5 days of acquisition + 1 day of probe trial) for assessment of spatial learning and memory. Initially, we investigated the effect of PCP at 2mg/kg, however, no apparent impairment in spatial learning and memory was observed. Subsequently, we examined the effect of higher doses of PCP at 5, 10 and 20 mg/kg. We found that the PCP at 10 mg/kg produced a significant increase in "latency to reach the platform" during the acquisition days and a significant increase in "latency of first entry to previous platform" during the probe day. There was no significant change observed in "swim speed" during the test days. Thus, we concluded that PCP at 10 mg/kg produced robust deficits in spatial learning and memory without being confounded by motor disturbances.
    Matched MeSH terms: Memory Disorders/chemically induced*
  6. Subramaniam SR, Khoo CS, Raymond AA, Che Din N, Syed Zakaria SZ, Tan HJ
    J Clin Neurosci, 2020 Mar;73:31-36.
    PMID: 32094071 DOI: 10.1016/j.jocn.2020.02.003
    The objective of this study is to determine prevalence and factors leading to verbal learning and memory dysfunction among patients with epilepsy. A total of 211 subjects were recruited. Their verbal memory was assessed by Rey's Auditory Verbal Learning Test (RAVLT). This test was further subdivided into four major spheres for analysis, namely the verbal learning, interference list, immediate memory and delayed memory. All data collected were analyzed using Statistical Package for Social Sciences. Among the 211 patients, 55% (n = 116) had focal seizures and the remaining 45% (n = 95) had generalized seizures. Prevalence of verbal learning and memory impairment was high at 39.97% overall, and found most commonly in patients with focal impaired awareness seizures. Verbal learning and immediate memory dysfunction were significantly lower in focal impaired awareness group compared to others. Age more than 50 years, exposure to three or more antiepileptic drugs and use of carbamazepine more than 1000 mg a day were the predictors in poor verbal memory outcome. No statistical difference was observed in the mean RAVLT scores among the gender and hand dominance groups. Between patients with and without electroencephalogram changes as well as brain magnetic resonance imaging changes, the mean RAVLT scores showed no statistically significant difference. Verbal learning and memory impairment is prevalent among the epilepsy patients. The consequences of the memory impairment can be as debilitating as the seizure control. RAVLT is a reliable and practical test in the clinical setting.
    Matched MeSH terms: Memory Disorders/chemically induced
  7. Gupta G, Chellappan DK, Agarwal M, Ashwathanarayana M, Nammi S, Pabreja K, et al.
    Cent Nerv Syst Agents Med Chem, 2017;17(3):196-200.
    PMID: 27834136 DOI: 10.2174/1871524917666161111095335
    BACKGROUND: Elevation in brain levels of aluminium can be neurotoxic and can cause learning and memory deficiencies. In Chinese medicine, Morus alba is used as a neuroprotective herb. The current study was intended to discover the recuperative effect of morusin against aluminium trichloride (AlCl3)-induced memory impairment in rats along with biochemical mechanism of its protective action.

    METHODS: Memory deficiency was produced by AlCl3 (100 mg/kg; p.o.) in experimental animals. Learning and memory activity was measured using Morris water maze (MWM) test model. Central cholinergic activity was evaluated through the measurement of brain acetylcholinesterase (AChE) activity. In addition to the above, oxidative stress was determined through assessment of brain thiobarbituric acid-reactive species (TBARS) and glutathione (GSH) levels.

    RESULTS: AlCl3 administration prompted significant deficiency of learning and memory in rats, as specified by a noticeable reduction in MWM presentation. AlCl3 administration also produced a significant deterioration in brain AChE action and brain oxidative stress (increase in TBARS and decrease in GSH) levels. Treatment with morusin (5.0 and 10.0 mg/kg, dose orally) significantly overturned AlCl3- induced learning and memory shortages along with diminution of AlCl3-induced rise in brain AChE activity and brain oxidative stress levels.

    CONCLUSION: It may be concluded that morusin exerts a memory-preservative outcome in mental discrepancies of rats feasibly through its various activities.

    Matched MeSH terms: Memory Disorders/chemically induced*
  8. Musa NH, Mani V, Lim SM, Vidyadaran S, Abdul Majeed AB, Ramasamy K
    J Dairy Res, 2017 Nov;84(4):488-495.
    PMID: 29154736 DOI: 10.1017/S0022029917000620
    Nutritional interventions are now recommended as strategies to delay Alzheimer's disease (AD) progression. The present study evaluated the neuroprotective effect (anti-inflammation) of lactic acid bacteria (either Lactobacillus fermentum LAB9 or L. casei LABPC) fermented cow's milk (CM) against lipopolysaccharide (LPS)-activated microglial BV2 cells in vitro. The ability of CM-LAB in attenuating memory deficit in LPS-induced mice was also investigated. ICR mice were orally administered with CM-LAB for 28 d before induction of neuroinflammation by LPS. Learning and memory behaviour were assessed using the Morris Water Maze Test. Brain tissues were homogenised for measurement of acetylcholinesterase (AChE), antioxidative, lipid peroxidation (malondialdehyde (MDA)) and nitrosative stress (NO) parameters. Serum was collected for cytokine analysis. CM-LAB9 and CM-LABPC significantly (P < 0·05) decreased NO level but did not affect CD40 expression in vitro. CM-LAB attenuated LPS-induced memory deficit in mice. This was accompanied by significant (P < 0·05) increment of antioxidants (SOD, GSH, GPx) and reduction of MDA, AChE and also pro-inflammatory cytokines. Unfermented cow's milk (UCM) yielded greater cytokine lowering effect than CM-LAB. The present findings suggest that attenuation of LPS-induced neuroinflamation and memory deficit by CM-LAB could be mediated via anti-inflammation through inhibition of AChE and antioxidative activities.
    Matched MeSH terms: Memory Disorders/chemically induced
  9. Andy SN, Pandy V, Alias Z, Kadir HA
    Life Sci, 2018 Aug 01;206:45-60.
    PMID: 29792878 DOI: 10.1016/j.lfs.2018.05.035
    AIM: Neuroinflammation is a critical pathogenic mechanism of most neurodegenerative disorders especially, Alzheimer's disease (AD). Lipopolysaccharides (LPS) are known to induce neuroinflammation which is evident from significant upsurge of pro-inflammatory mediators in in vitro BV-2 microglial cells and in vivo animal models. In present study, we investigated anti-neuroinflammatory properties of deoxyelephantopin (DET) isolated from Elephantopus scaber in LPS-induced neuroinflammatory rat model.

    MATERIALS AND METHODS: In this study, DET (0.625. 1.25 and 2.5 mg/kg, i.p.) was administered in rats for 21 days and those animals were challenged with single injection of LPS (250 μg/kg, i.p.) for 7 days. Cognitive and behavioral assessment was carried out for 7 days followed by molecular assessment on brain hippocampus. Statistical significance was analyzed with one-way analysis of variance followed by Dunnett's test to compare the treatment groups with the control group.

    KEY FINDINGS: DET ameliorated LPS-induced neuroinflammation by suppressing major pro-inflammatory mediators such as iNOS and COX-2. Furthermore, DET enhanced the anti-inflammatory cytokines and concomitantly suppressed the pro-inflammatory cytokines and chemokine production. DET treatment also reversed LPS-induced behavioral and memory deficits and attenuated LPS-induced elevation of the expression of AD markers. DET improved synaptic-functionality via enhancing the activity of pre- and post-synaptic markers, like PSD-95 and SYP. DET also prevented LPS-induced apoptotic neurodegeneration via inhibition of PARP-1, caspase-3 and cleaved caspase-3.

    SIGNIFICANCE: Overall, our studies suggest DET can prevent neuroinflammation-associated memory impairment and neurodegeneration and it could be developed as a therapeutic agent for the treatment of neuroinflammation-mediated and neurodegenerative disorders, such as AD.

    Matched MeSH terms: Memory Disorders/chemically induced*
  10. Omidbakhsh R, Rajabli B, Nasoohi S, Khallaghi B, Mohamed Z, Naidu M, et al.
    Exp Brain Res, 2014 Nov;232(11):3687-96.
    PMID: 25098558 DOI: 10.1007/s00221-014-4052-4
    Lipopolysaccharide is an endotoxin to induce sickness behavior in several animal models to explore the link between immune activation and cognition. Neuroinflammation playing a pivotal role in disease progress is evidently influenced by sphingosine-1-phosphate. As one of the sphingosine analogs in clinical use for multiple sclerosis, fingolimod (FTY720) was shown to substantially affect gene expression profile in the context of AD in our previous experiments. The present study was designed to evaluate the drug efficacy in the context of the mere inflammatory context leading to memory impairment. FTY720 was repeatedly administered for a few days before or after intracerebral lipopolysaccharide (LPS) injection in rats. Animal's brains were then assigned to histological as well as multiplex mRNA assay following memory performance test. Both FTY720 pre-treatment and post-treatment were similarly capable of ameliorating LPS-induced memory impairment as assessed by passive avoidance test. Such amending effects may be partly accountable by the concomitant alterations in transcriptional levels of mitogen-activated protein kinases as well as inflammatory genes determined by QuantiGene Plex analysis. These findings confirming FTY720 application benefits suggest its efficacy may not differ significantly while considered either as a preventive or as a therapeutic approach against neuroinflammation.
    Matched MeSH terms: Memory Disorders/chemically induced*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links