Displaying publications 1 - 20 of 91 in total

Abstract:
Sort:
  1. Chong WH, Leong SS, Lim J
    Electrophoresis, 2021 11;42(21-22):2303-2328.
    PMID: 34213767 DOI: 10.1002/elps.202100081
    Combining both device and particle designs are the essential concepts to be considered in magnetophoretic system development. Researcher efforts are often dedicated to only one of these design aspects and neglecting the interplay between them. Herein, to bring out importance of the idea of integration between device and particle, we reviewed the working principle of magnetophoretic system (includes both device and particle design concepts). Since, the magnetophoretic force is influenced by both field gradient and magnetization volume, hence, accurate prediction of the magnetophoretic force is relying on the availability of information on both parameters. In device design, we focus on the different strategies used to create localized high-field gradient. For particle design, we emphasize on the scaling between hydrodynamic size and magnetization volume. Moreover, we also briefly discussed the importance of magnetoshape anisotropy related to particle design aspect of magnetophoretic systems. Next, we illustrated the need for integration between device and particle design using microscale applications of magnetophoretic systems, include magnetic tweezers and microfluidic systems, as our working example. On the basis of our discussion, we highlighted several promising examples of microscale magnetophoretic systems which greatly utilized the interplay between device and particle design. Further, we concluded the review with several factors that possibly resulted in the lack of research efforts related to device and particle design integration.
    Matched MeSH terms: Magnetics*
  2. Ramimoghadam D, Bagheri S, Abd Hamid SB
    Colloids Surf B Biointerfaces, 2015 Sep 1;133:388-411.
    PMID: 26073507 DOI: 10.1016/j.colsurfb.2015.02.003
    Magnetic iron oxide nanoparticles (MNPs) have emerged as highly desirable nanomaterials in the context of many research works, due to their extensive industrial applications. However, they are prone to agglomerate on account of the anisotropic dipolar attraction, and therefore misled the particular properties related to single-domain magnetic nanostructures. The surface modification of MNPs is quite challenging for many applications, as it involves surfactant-coating for steric stability, or surface modifications that results in repulsive electrostatic force. Hereby, we focus on the dispersion of MNPs and colloidal stability.
    Matched MeSH terms: Magnetics*
  3. Gul T, Islam S, Shah RA, Khalid A, Khan I, Shafie S
    PLoS One, 2015;10(7):e0126698.
    PMID: 26147287 DOI: 10.1371/journal.pone.0126698
    This paper studies the unsteady magnetohydrodynamics (MHD) thin film flow of an incompressible Oldroyd-B fluid over an oscillating inclined belt making a certain angle with the horizontal. The problem is modeled in terms of non-linear partial differential equations with some physical initial and boundary conditions. This problem is solved for the exact analytic solutions using two efficient techniques namely the Optimal Homotopy Asymptotic Method (OHAM) and Homotopy Perturbation Method (HPM). Both of these solutions are presented graphically and compared. This comparison is also shown in tabular form. An excellent agreement is observed. The effects of various physical parameters on velocity have also been studied graphically.
    Matched MeSH terms: Magnetics*
  4. Khan I, Ali F, Shafie S
    PLoS One, 2013;8(5):e61531.
    PMID: 23667442 DOI: 10.1371/journal.pone.0061531
    The present work is concerned with exact solutions of Stokes second problem for magnetohydrodynamics (MHD) flow of a Burgers' fluid. The fluid over a flat plate is assumed to be electrically conducting in the presence of a uniform magnetic field applied in outward transverse direction to the flow. The equations governing the flow are modeled and then solved using the Laplace transform technique. The expressions of velocity field and tangential stress are developed when the relaxation time satisfies the condition γ =  λ²/4 or γ> λ²/4. The obtained closed form solutions are presented in the form of simple or multiple integrals in terms of Bessel functions and terms with only Bessel functions. The numerical integration is performed and the graphical results are displayed for the involved flow parameters. It is found that the velocity decreases whereas the shear stress increases when the Hartmann number is increased. The solutions corresponding to the Stokes' first problem for hydrodynamic Burgers' fluids are obtained as limiting cases of the present solutions. Similar solutions for Stokes' second problem of hydrodynamic Burgers' fluids and those for Newtonian and Oldroyd-B fluids can also be obtained as limiting cases of these solutions.
    Matched MeSH terms: Magnetics/methods*
  5. Lund LA, Omar Z, Khan I
    Comput Methods Programs Biomed, 2019 Dec;182:105044.
    PMID: 31491654 DOI: 10.1016/j.cmpb.2019.105044
    BACKGROUND AND OBJECTIVE: The last two and half decades are witnessed a great surge in the use convective fluids for enhancement of heat transfer of minerals ethylene glycol, oil and water due to their numerous applications in the industrial segments including chemical production, microelectronics, power generation, transportation, and air-conditioning. For this purpose, different procedures were applied to upgrade the thermal conductivity of common fluid but could not. Further, Choi and Eastman in 1995 introduced nanofluid which has good thermal properties as compared to common fluids. After that, it can be seen that researchers, mathematicians, and scientists tried to understand the principles of nanofluids and how to implicate them in many different practical applications. In this work, the Buongiorno model has been considered for nanofluid. One of the prime objectives is to consider all possible multiple solutions of the model because these solutions cannot be seen experimentally.

    METHODS: The governing equations of fluid flow have been transformed in the form of ordinary differential equations. These equations have been solved by two methods namely, shooting method and three-stage Lobatto IIIa formula.

    RESULTS: The effects of different parameters on temperature, velocity, concentration profiles, skin friction coefficient, Sherwood number, and reduced Nusselt number were obtained and presented graphically. It was noticed that four solutions existed at definite ranges of the parameters for high suction over both surfaces for the first time. The results of the stability analysis revealed that only the first solution is more stable and possess physical reliability compared to the remaining solutions.

    CONCLUSION: The graphs also indicated that the fluid velocity decreases as the thermophoresis parameter increases but the opposite behavior observed for both temperature and concentration profiles in the first solution. Furthermore, it was detected that the concentration profile declined at the higher values of the Brownian motion parameter.

    Matched MeSH terms: Magnetics*
  6. Lim J, Yeap SP, Che HX, Low SC
    Nanoscale Res Lett, 2013;8(1):381.
    PMID: 24011350 DOI: 10.1186/1556-276X-8-381
    Here we provide a complete review on the use of dynamic light scattering (DLS) to study the size distribution and colloidal stability of magnetic nanoparticles (MNPs). The mathematical analysis involved in obtaining size information from the correlation function and the calculation of Z-average are introduced. Contributions from various variables, such as surface coating, size differences, and concentration of particles, are elaborated within the context of measurement data. Comparison with other sizing techniques, such as transmission electron microscopy and dark-field microscopy, revealed both the advantages and disadvantages of DLS in measuring the size of magnetic nanoparticles. The self-assembly process of MNP with anisotropic structure can also be monitored effectively by DLS.
    Matched MeSH terms: Magnetics
  7. Norhisam, M., Roslan, M.K., Ishak, A., Hamidon, M.N.
    MyJurnal
    Visual inspection to locate metals embedded in walls or floors is impractical. Detection of these metals can only be done with a proper metal detection. Accordingly, the development of a magnetic imaging system based on giant magneto-resistance (GMR) sensors is presented for metal shape detection . This system is based on magnetic flux leakage testing (MFLT) principle for detecting the shape of ferromagnetic material specimens. The imaging system is constructed using 21 linear GMR sensors array as signals sensing unit (SSU). In this study, a few ferromagnetic SS400 mild steels specimens in various shapes are used as specimens. Image produced confirm system functionality in detecting and evaluating metal shapes.
    Matched MeSH terms: Magnetics
  8. Kayode JS, Yusup Y
    Data Brief, 2018 Aug;19:798-803.
    PMID: 29900375 DOI: 10.1016/j.dib.2018.05.090
    A secondary dataset was generated from the Euldph-λ semi-automatic Algorithm, (ESA) developed to automatically computes various depths to the magnetic anomalies using a primary data set from gridded aeromagnetic data obtained in the study area. Euler Deconvolution techniques, (EDT), was adopted in the identification and definition of the magnetic anomaly source rocks in the study area. The aim is to use the straightforward technique to pinpoint magnetic anomalies at a depth which substantiate mineralization potential of the area. The ESA was integrated with the imaging function of Oasis Montaj 2014 source parameter from Geosoft® Inc. From the data, it could be summarized that similar tectonic processes during the deformation and metamorphic activities, the subsurface structures of the study area produce corresponding trending form.
    Matched MeSH terms: Magnetics
  9. Rose Farahiyan Munawar, Sarani Zakaria, Shahidan Radiman, Chia CH, Mustaffa Abdullah, Yamauchi T
    Magnetic paper were prepared via the in situ synthesis method with ferrites in the presence of polyethylenimine (PEI). In this work, the thermomechanical pulp (TMP) fibers were used due to low percentage of collapse lumen and the large lumen size for optimum loading degree. Four cycles of the reaction were performed on the TMP fibers with pH values of 4-10. It was found that variation of pH value played an important role in the loading degree of pulp during synthesis process. The magnetic, morphological and structural properties of the magnetic paper obtained were reported. At the
    optimum pH of 6.0, saturation magnetization was found to be 3.08 emu/g, remainance magnetization was 0.11 emu/g and coercive force was 12.64 Oe. The optimum loading degree was found to be 23.25%.
    Matched MeSH terms: Magnetics
  10. Baiuitiar Ul Haq, Ahmed R, Shaari A, Afaq A, Hussain R
    Sains Malaysiana, 2014;43:813-817.
    The central theme of nanotechnology to miniaturize devices has stimulated interest in diluted magnetic semiconductors (DMS). DMS that simultaneously exhibit magnetic and semiconducting behavior are capable of parting properties of two different function devices into one. In this research we present our first principles investigations related to the structural and electronic properties of, Cr doped zinc-blende (zB) ZnO, DMS. These calculations are carried out using full potential linearized augmented plane wave plus local orbital (FP-L(APW+lo)) with generalized gradient approximations approach as implemented in WIEN2k code. In this study, the effect of Cr doping on lattice parameters, spin polarized electronic band structure, density of states (Dos) of ZnO is presented and analyzed in detail.
    Matched MeSH terms: Magnetics
  11. Tan YW, Leong SS, Lim J, Yeoh WM, Toh PY
    Electrophoresis, 2022 Nov;43(21-22):2234-2249.
    PMID: 35921231 DOI: 10.1002/elps.202200078
    Low-gradient magnetic separation (LGMS) of magnetic nanoparticles (MNPs) has been proven as one of the techniques with great potential for biomedical and environmental applications. Recently, the underlying principle of particle capture by LGMS, through a process known as magnetophoresis, under the influence of hydrodynamic effect has been widely studied and illustrated. Even though the hydrodynamic effect is very substantial for batch processes, its impact on LGMS operated at continuous flow (CF) condition remained largely unknown. Hence, in this study, the dynamical behaviour of LGMS process operated under CF was being studied. First, the LGMS experiments using poly(sodium 4-styrenesulfonate)-functionalized-MNP as modelled particle system were performed through batchwise (BW) and CF modes at different operating conditions. Here BW operation was used as a comparative study to elucidate the transport mechanism of MNP under the similar environment of CF-LGMS process, and it was found out that the convection induced by magnetophoresis (timescale effective is ∼1200 s) is only significant at far-from-magnet region. Hence, it can be deduced that forced convection is more dominant on influencing the transport behaviour of CF-LGMS (with resident time ≤240 s). Moreover, we found that the separation efficiency of CF-LGMS process can be boosted by the higher number of magnets, the higher MNP concentration and the lower flowrate of MNP solution. To better illustrate the underlying dynamical behaviour of LGMS process, a mathematical model was developed to predict its kinetic profile and separation efficiency (with average error of ∼2.6% compared to the experimental results).
    Matched MeSH terms: Magnetics
  12. Lim CC, Shuit SH, Ng QH, Rahim SKEA, Hoo PY, Yeoh WM, et al.
    Environ Sci Pollut Res Int, 2023 Mar;30(14):40242-40259.
    PMID: 36604398 DOI: 10.1007/s11356-022-25064-4
    In view of the simple and rapid conveniency of magnetic separation, magnetic nanocomposites had notably gained attention from researchers for environmental field applications. In this work, carboxylated magnetic multi-walled carbon nanotubes (c-MMWCNTs) and novel sulfonated MMWCNTs (s-MMWCNTs) were synthesized by a facile solvent-free direct doping method. Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, energy dispersive X-ray, vibrating sample magnetometer, and point of zero charge analyses confirmed the successful doping of the Fe3O4 nanoparticles into the functionalized MWCNTs to form MMWCNTs. Besides, the bonding stabilities of both c-MMWCNTs and s-MMWCNTs were compared, and results showed that s-MMWCNTs possessed more substantial bonding stability than that of c-MMWCNTs with significantly less leaching amount of Fe3O4. The adsorption capacity of s-MMWCNTs was higher than that of c-MMWCNTs owing to the stronger electronegativity sulfonic group in s-MMWCNTs. Moreover, the reusability experiments proved that the adsorbent remained consistently excellent MB removal efficiency (R > 94%) even reused for twelve cycles of batch adsorption. The finding of the present work highlights the simple fabrication of novel s-MMWCNTs and its potential to be served as a promising and sustainable adsorbent for water remediation owing to its enhanced bonding stability, high adsorption performance, magnetic separability, and supreme recyclability.
    Matched MeSH terms: Magnetics
  13. Lim JK, Chieh DC, Jalak SA, Toh PY, Yasin NH, Ng BW, et al.
    Small, 2012 Jun 11;8(11):1683-92.
    PMID: 22438107 DOI: 10.1002/smll.201102400
    Magnetic collection of the microalgae Chlorella sp. from culture media facilitated by low-gradient magnetophoretic separation is achieved in real time. A removal efficiency as high as 99% is accomplished by binding of iron oxide nanoparticles (NPs) to microalgal cells in the presence of the cationic polyelectrolyte poly(diallyldimethylammonium chloride) (PDDA) as a binder and subsequently subjecting the mixture to a NdFeB permanent magnet with surface magnetic field ≈6000 G and magnetic field gradient <80 T m(-1) . Surface functionalization of magnetic NPs with PDDA before exposure to Chlorella sp. is proven to be more effective in promoting higher magnetophoretic removal efficiency than the conventional procedure, in which premixing of microalgal cells with binder is carried out before the addition of NPs. Rodlike NPs are a superior candidate for enhancing the magnetophoretic separation compared to spherical NPs due to their stable magnetic moment that originates from shape anisotropy and the tendency to form large NP aggregates. Cell chaining is observed for nanorod-tagged Chlorella sp. which eventually fosters the formation of elongated cell clusters.
    Matched MeSH terms: Magnetics*
  14. Abd Aziz A, Yong KS, Ibrahim S, Pichiah S
    J Hazard Mater, 2012 Jan 15;199-200:143-50.
    PMID: 22100220 DOI: 10.1016/j.jhazmat.2011.10.069
    An enhanced ferromagnetic property, visible light active TiO(2) photocatalyst was successfully synthesized by supporting strontium ferrite (SrFe(12)O(19)) onto TiO(2) doped with nitrogen (N) and compared with N-doped TiO(2). The synthesized catalysts were further characterized with X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDS), BET surface area analysis, vibrating sample magnetometer (VSM), X-ray photon spectroscopy (XPS) and visible light spectroscopy analysis for their respective properties. The XRD and EDS revealed the structural and inorganic composition of N-TiO(2) supported on SrFe(12)O(19). The supported N-TiO(2) exhibited a strong ferromagnetic property with tremendous stability against magnetic property losses. It also resulted in reduced band gap (2.8 eV) and better visible light absorption between 400 and 800 nm compared to N-doped TiO(2). The photocatalytic activity was investigated with a recalcitrant phenolic compound namely 2,4-dichlorophenol (2,4-DCP) as a model pollutant under direct bright and diffuse sunlight exposure. A complete degradation of 2,4-DCP was achieved with an initial concentration of 50mg/L for both photocatalysts in 180 min and 270 min respectively under bright sunlight. Similarly the diffuse sunlight study resulted in complete degradation for supported N-TiO(2) and >85% degradation N-TiO(2), respectively. Finally the supported photocatalyst was separated under permanent magnetic field with a mass recovery ≈ 98% for further reuse.
    Matched MeSH terms: Magnetics*
  15. Idris A, Hassan N, Rashid R, Ngomsik AF
    J Hazard Mater, 2011 Feb 15;186(1):629-35.
    PMID: 21168966 DOI: 10.1016/j.jhazmat.2010.11.101
    Physical adsorption and photocatalytic reduction of Cr(VI) in magnetic separable beads were investigated. In order to elucidate the kinetics of photocatalytic process, operating parameters such as catalyst dosage and the initial concentration were examined in detail. It was observed that the reduction rate of Cr(VI) increased with an increase in the catalyst loading, as this translated into an increase in the number of available active sites. Critical scrutiny of the percentage of the initial reduction rate versus time at various initial concentration of Cr(VI) revealed that the rate of substrate conversion decreased as the initial concentration increased. The kinetic analysis of the photoreduction showed that the removal of Cr(VI) satisfactory obeyed the pseudo first-order kinetic according to the Langmuir-Hinshelwood (L-H) model and the absorption of Cr(VI) on the magnetic beads surfaces was the controlling step in the entire reduction process. Furthermore, desorption experiments by elution of the loaded gels with sodium hydroxide indicated that the magnetic photocatalyst beads could be reused without significant losses of their initial properties even after 3 adsorption-desorption cycles.
    Matched MeSH terms: Magnetics*
  16. Mustapha N, Amin N, Chakravarty S, Mandal PK
    Comput Biol Med, 2009 Oct;39(10):896-906.
    PMID: 19665698 DOI: 10.1016/j.compbiomed.2009.07.004
    Flow of an electrically conducting fluid characterizing blood through the arteries having irregular shaped multi-stenoses in the environment of a uniform transverse magnetic-field is analysed. The flow is considered to be axisymmetric with an outline of the irregular stenoses obtained from a three-dimensional casting of a mild stenosed artery, so that the physical problem becomes more realistic from the physiological point of view. The marker and cell (MAC) and successive-over-relaxation (SOR) methods are respectively used to solve the governing unsteady magnetohydrodynamic (MHD) equations and pressure-Poisson equation quantitatively and to observe the flow separation. The results obtained show that the flow separates mostly towards the downstream of the multi-stenoses. However, the flow separation region keeps on shrinking with the increasing intensity of the magnetic-field which completely disappears with sufficiently large value of the Hartmann number. The present observations certainly have some clinical implications relating to magnetotherapy which help reducing the complex flow separation zones causing flow disorder leading to the formation and progression of the arterial diseases.
    Matched MeSH terms: Magnetics*
  17. Salim MI, Supriyanto E, Haueisen J, Ariffin I, Ahmad AH, Rosidi B
    Med Biol Eng Comput, 2013 Apr;51(4):459-66.
    PMID: 23238828 DOI: 10.1007/s11517-012-1014-5
    This paper proposes a novel hybrid magnetoacoustic measurement (HMM) system aiming at breast cancer detection. HMM combines ultrasound and magnetism for the simultaneous assessment of bioelectric and acoustic profiles of breast tissue. HMM is demonstrated on breast tissue samples, which are exposed to 9.8 MHz ultrasound wave with the presence of a 0.25 Tesla static magnetic field. The interaction between the ultrasound wave and the magnetic field in the breast tissue results in Lorentz Force that produces a magnetoacoustic voltage output, proportional to breast tissue conductivity. Simultaneously, the ultrasound wave is sensed back by the ultrasound receiver for tissue acoustic evaluation. Experiments are performed on gel phantoms and real breast tissue samples harvested from laboratory mice. Ultrasound wave characterization results show that normal breast tissue experiences higher attenuation compared with cancerous tissue. The mean magnetoacoustic voltage results for normal tissue are lower than that for the cancerous tissue group. In conclusion, the combination of acoustic and bioelectric measurements is a promising approach for breast cancer diagnosis.
    Matched MeSH terms: Magnetics/methods*
  18. Banihashemian SM, Periasamy V, Boon Tong G, Abdul Rahman S
    PLoS One, 2016;11(3):e0149488.
    PMID: 26999445 DOI: 10.1371/journal.pone.0149488
    Studying the effect of a magnetic field on oligonucleotide DNA can provide a novel DNA manipulation technique for potential application in bioengineering and medicine. In this work, the optical and electrochemical response of a 100 bases oligonucleotides DNA, cytosine-guanine (CG100), is investigated via exposure to different magnetic fields (250, 500, 750, and 1000 mT). As a result of the optical response of CG100 to the magnetic field, the ultra-violet-visible spectrum indicated a slight variation in the band gap of CG100 of about 0.3 eV. Raman spectroscopy showed a significant deviation in hydrogen and phosphate bonds' vibration after exposure to the magnetic field. Oligonucleotide DNA mobility was investigated in the external electric field using the gel electrophoresis technique, which revealed a small decrease in the migration of CG100 after exposure to the magnetic field.
    Matched MeSH terms: Magnetics*
  19. Khan MA, Alqadami AA, Otero M, Siddiqui MR, Alothman ZA, Alsohaimi I, et al.
    Chemosphere, 2019 Mar;218:1089-1099.
    PMID: 30609488 DOI: 10.1016/j.chemosphere.2018.11.210
    Efforts to improve water quality have led to the development of green and sustainable water treatment approaches. Herein, nitrogen-doped magnetized hydrochar (mSBHC-N) was synthesized, characterized, and used for the removal of post-transition and transition heavy metals, viz. Pb2+ and Cd2+ from aqueous environment. mSBHC-N was found to be mesoporous (BET surface area - 62.5 m2/g) and paramagnetic (saturation magnetization - 44 emu/g). Both, FT-IR (with peaks at 577, 1065, 1609 and 3440 cm-1 corresponding to Fe - O stretching vibrations, C - N stretching, N - H in-plane deformation and stretching) and XPS analyses (with peaks at 284.4, 400, 530, 710 eV due to C 1s, N 1s, O 1s, and Fe 2p) confirmed the presence of oxygen and nitrogen containing functional groups on mSBHC-N. The adsorption of Pb2+ and Cd2+ was governed by oxygen and nitrogen functionalities through electrostatic and co-ordination forces. 75-80% of Pb2+ and Cd2+ adsorption at Co: 25 mg/L, either from deionized water or humic acid solution was accomplished within 15 min. The data was fitted to pseudo-second-order kinetic and Langmuir isotherm models, with maximum monolayer adsorption capacities being 323 and 357 mg/g for Cd2+and Pb2+ at 318 K, respectively. Maximum Cd2+ (82.6%) and Pb2+ (78.7%) were eluted with 0.01 M HCl, simultaneously allowing minimum iron leaching (2.73%) from mSBHC-N. In conclusion, the study may provide a novel, economical, and clean route to utilize agro-waste, such as sugarcane bagasse (SB), for aquatic environment remediation.
    Matched MeSH terms: Magnetics/methods*
  20. Yahya N, Al Habashi RM, Koziol K, Borkowski RD, Akhtar MN, Kashif M, et al.
    J Nanosci Nanotechnol, 2011 Mar;11(3):2652-6.
    PMID: 21449447
    Aluminum substituted yttrium iron garnet nano particles with compositional variation of Y(3.0-x) A1(x)Fe5O12, where x = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 were prepared using sol gel technique. The X-ray diffraction results showed that the best garnet phase appeared when the sintering temperature was 800 degrees C. Nano-crystalline particles with high purity and sizes ranging from 20 to 100 nm were obtained. It was found that the aluminum substitution had resulted in a sharp fall of the d-spacing when x = 2, which we speculated is due to the preference of the aluminum atoms to the smaller tetrahedron and octahedron sites instead of the much larger dodecahedron site. High resolution transmission electron microscope (HRTEM) and electron diffraction (ED) patterns showed single crystal nanoparticles were obtained from this method. The magnetic measurement gave moderate values of initial permeability; the highest value of 5.3 was shown by sample Y3Fe5O12 at more than 100 MHz which was attributed to the morphology of the microstructure which appeared to be homogeneous. This had resulted in an easy movement of domain walls. The substitution of aluminum for yttrium is speculated to cause a cubic to rhombodedral structural change and had weakened the super-exchange interactions thus a fall of real permeability was observed. This might have created a strain in the sub-lattices and had subsequently caused a shift of resonance frequencies to more than 1.8 GHz when x > 0.5.
    Matched MeSH terms: Magnetics*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links