Displaying all 2 publications

Abstract:
Sort:
  1. Jaswir I, Shahidan N, Othman R, Has-Yun Hashim YZ, Octavianti F, bin Salleh MN
    J Oleo Sci, 2014;63(8):761-7.
    PMID: 25007748
    Carotenoids are antioxidants with pharmaceutical potential. The major carotenoids important to humans are α-carotene, β-carotene, lycopene, lutein, zeaxanthin, and β-cryptoxanthin. Some of the biological functions and actions of these individual carotenoids are quite similar to each other, whereas others are specific. Besides genotype and location, other environmental effects such as temperature, light, mineral uptake, and pH have been found affect carotenoid development in plant tissues and organs. Therefore, this research investigated the effects of the season and storage periods during postharvest handling on the accumulation of carotenoid in pumpkin. This study shows that long-term storage of pumpkins resulted in the accumulation of lutein and β-carotene with a slight decrease in zeaxanthin. The amounts of β-carotene ranged from 174.583±2.105 mg/100g to 692.871±22.019 mg/100g, lutein from 19.841±9.693 mg/100g to 59.481±1.645 mg/100g, and zeaxanthin from not detected to 2.709±0.118 mg/100g. The pumpkins were collected three times in a year; they differed in that zeaxanthin was present only in the first season, while the amounts of β-carotene and lutein were the highest in the second and third seasons, respectively. By identifying the key factors among the postharvest handling conditions that control specific carotenoid accumulations, a greater understanding of how to enhance the nutritional values of pumpkin and other crops will be gained. Postharvest storage conditions can markedly enhance and influence the levels of zeaxanthin, lutein, and β-carotene in pumpkin. This study describes how the magnitudes of these effects depend on the storage period and season.
    Matched MeSH terms: Lutein/metabolism
  2. Syamila M, Gedi MA, Briars R, Ayed C, Gray DA
    Food Chem, 2019 Jun 30;284:188-197.
    PMID: 30744845 DOI: 10.1016/j.foodchem.2019.01.055
    The aim of this study was to evaluate the interaction between packaging parameters (transmission of light and oxygen) and storage temperatures (4, 20, 40 °C) on nutrient retention of Spinach (Spinacia oleracea) juice, spray-dried in the absence of an added encapsulant. β-Carotene was more susceptible to degradation compared with lutein and α-tocopherol. Under our experimental conditions, it was observed that excluding low fluorescent light intensity and air by vacuum packaging at 20 °C did not seem to improve nutrient retention loss over time (p > 0.05). The rate of β-carotene, lutein and α-tocopherol loss displayed first order reaction kinetic with low activation energy of 0.665, 2.650 and 13.893 kJ/mol for vacuum, and 1.089, 4.923 and 14.142 kJ/mol for non-vacuum, respectively. The reaction kinetics and half-life for β-carotene, lutein and α-tocopherol at 4 °C and non-vacuumed were 2.2 × 10-2, 1.2 × 10-2, and 0.8 × 10-2 day-1, and 32.08, 58.25 and 85.37 day, respectively.
    Matched MeSH terms: Lutein/metabolism*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links