METHODS: Comprehensive searches of the NCBI database were performed to identify published peer-reviewed articles and genomes of E. faecalis ST476. Each genome was analysed for resistome, virulome, OptrA variant and optrA genetic contexts. A phylogenetic comparison of ST476 genomes with publicly available genomes of other STs was also performed.
RESULTS: Sixty-six E. faecalis ST476 isolates from 15 countries (China, Japan, South Korea, Austria, Denmark, Spain, Czech Republic, Colombia, Tunisia, Italy, Malaysia, Belgium, Germany, United Arab Emirates and Switzerland) mainly of human and animal origin were identified. Thirty available ST476 genomes compared with genomes of 591 STs indicated a progressive radiation of E. faecalis STs starting from ST21. The closest ancestral node for ST476 was ST1238. Thirty E. faecalis ST476 genomes exhibited 3-916 SNP differences. Several antimicrobial resistance and virulence genes were conserved among the ST476 genomes. The optrA genetic context exhibited a high degree of or complete identity to the chromosomal transposon Tn6674. Only three isolates displayed an optrA-carrying plasmid with complete or partial Tn6674. The WT OptrA protein was most widespread in the ST476 lineage.
CONCLUSIONS: Linezolid-resistant optrA-carrying E. faecalis of the clonal lineage ST476 is globally distributed in human, animal and environmental settings. The presence of such an emerging clone can be of great concern for public health. Thus, a One Health approach is needed to counteract the spread and the evolution of this enterococcal clonal lineage.
METHODS: In total, 7541 organisms causing documented infections were consecutively collected in 66 centres in 33 countries, excluding the USA. Susceptibility testing was performed by broth microdilution. Isolates displaying linezolid MIC results of ≥4 mg/L were molecularly characterized.
RESULTS: Linezolid inhibited all Staphylococcus aureus at ≤2 mg/L, with MIC50 results of 1 mg/L, regardless of methicillin resistance. A similar linezolid MIC50 result (i.e. 0.5 mg/L) was observed against CoNS, with the vast majority of isolates (99.4%) also inhibited at ≤2 mg/L. Six CoNS that exhibited elevated linezolid MIC values were found to contain alterations in the 23S rRNA and/or L3 ribosomal protein. Linezolid exhibited consistent modal MIC and MIC50 results (1 mg/L) against enterococci, regardless of species or vancomycin resistance. Three Enterococcus faecalis from Galway and Dublin (Ireland) and Kelantan (Malaysia) showed MIC results of 4 to 8 mg/L and carried optrA. All Streptococcus pneumoniae, viridans-group streptococci and β-haemolytic streptococci were inhibited by linezolid at ≤2, ≤2 and ≤1 mg/L, respectively, with equivalent MIC90 results (1 mg/L for all groups).
CONCLUSIONS: These results document the continued long-term and stable in vitro potency of linezolid and reveal a limited number of isolates with decreased susceptibility to linezolid (i.e. MIC ≥4 mg/L). The latter isolates primarily showed mutations in the 23S rRNA gene and/or L3 protein, but cfr was not detected. Moreover, this study shows that isolates carrying the newly described ABC transporter optrA are not restricted to China.
METHODS: Seven optrA-carrying E. faecalis obtained from chicken faeces (n=3, August 2017) and retail chicken meat (n=4, August 2017) in Tunisia were analysed. Antimicrobial susceptibility was determined by disc diffusion, broth microdilution and Etest against 13 antibiotics, linezolid and tedizolid, respectively (EUCAST/CLSI). optrA stability (∼600 bacterial generations), transfer (filter mating) and location (S1-PFGE/hybridization) were characterized. WGS (Illumina-HiSeq) was done for four representatives that were analysed through in silico and genomic mapping tools.
RESULTS: Four MDR clones carrying different virulence genes were identified in chicken faeces (ST476) and retail meat (the same ST476 clone plus ST21 and ST859) samples. MICs of linezolid and tedizolid were stably maintained at 8 and 1-2 mg/L, respectively. optrA was located in the same transferable chromosomal Tn6674-like element in ST476 and ST21 clones, similar to isolates from pigs in Malaysia and humans in China. ST859 carried a non-conjugative plasmid of ∼40 kb with an impB-fexA-optrA segment, similar to plasmids from pigs and humans in China.
CONCLUSIONS: The same chromosomal and transferable Tn6674-like element was identified in different E. faecalis clones from humans and animals. The finding of retail meat contaminated with the same linezolid-resistant E. faecalis strain obtained from a food-producing animal highlights the potential role of the food chain in the worrisome dissemination of optrA that can be stably maintained without selective pressure over generations.