Displaying publications 1 - 20 of 45 in total

Abstract:
Sort:
  1. Ahmad Rizal NFA, Ibrahim MF, Zakaria MR, Kamal Bahrin E, Abd-Aziz S, Hassan MA
    Molecules, 2018 Apr 02;23(4).
    PMID: 29614823 DOI: 10.3390/molecules23040811
    The combination of superheated steam (SHS) with ligninolytic enzyme laccase pretreatment together with size reduction was conducted in order to enhance the enzymatic hydrolysis of oil palm biomass into glucose. The oil palm empty fruit bunch (OPEFB) and oil palm mesocarp fiber (OPMF) were pretreated with SHS and ground using a hammer mill to sizes of 2, 1, 0.5 and 0.25 mm before pretreatment using laccase to remove lignin. This study showed that reduction of size from raw to 0.25 mm plays important role in lignin degradation by laccase that removed 38.7% and 39.6% of the lignin from OPEFB and OPMF, respectively. The subsequent saccharification process of these pretreated OPEFB and OPMF generates glucose yields of 71.5% and 63.0%, which represent a 4.6 and 4.8-fold increase, respectively, as compared to untreated samples. This study showed that the combination of SHS with laccase pretreatment together with size reduction could enhance the glucose yield.
    Matched MeSH terms: Lignin/metabolism*
  2. Akhtar J, Idris A, Abd Aziz R
    Appl Microbiol Biotechnol, 2014 Feb;98(3):987-1000.
    PMID: 24292125 DOI: 10.1007/s00253-013-5319-6
    Production of succinic acid via separate enzymatic hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) are alternatives and are environmentally friendly processes. These processes have attained considerable positions in the industry with their own share of challenges and problems. The high-value succinic acid is extensively used in chemical, food, pharmaceutical, leather and textile industries and can be efficiently produced via several methods. Previously, succinic acid production via chemical synthesis from petrochemical or refined sugar has been the focus of interest of most reviewers. However, these expensive substrates have been recently replaced by alternative sustainable raw materials such as lignocellulosic biomass, which is cheap and abundantly available. Thus, this review focuses on succinic acid production utilizing lignocellulosic material as a potential substrate for SSF and SHF. SSF is an economical single-step process which can be a substitute for SHF - a two-step process where biomass is hydrolyzed in the first step and fermented in the second step. SSF of lignocellulosic biomass under optimum temperature and pH conditions results in the controlled release of sugar and simultaneous conversion into succinic acid by specific microorganisms, reducing reaction time and costs and increasing productivity. In addition, main process parameters which influence SHF and SSF processes such as batch and fed-batch fermentation conditions using different microbial strains are discussed in detail.
    Matched MeSH terms: Lignin/metabolism*
  3. Nur-Nazratul FMY, Rakib MRM, Zailan MZ, Yaakub H
    PLoS One, 2021;16(9):e0258065.
    PMID: 34591932 DOI: 10.1371/journal.pone.0258065
    The changes in lignocellulosic biomass composition and in vitro rumen digestibility of oil palm empty fruit bunch (OPEFB) after pre-treatment with the fungus Ganoderma lucidum were evaluated. The results demonstrated that the pre-treatment for 2-12 weeks has gradually degraded the OPEFB in a time-dependent manner; whereby lignin, cellulose, and hemicellulose were respectively degraded by 41.0, 20.5, and 26.7% at the end of the incubation period. The findings were corroborated using the physical examination of the OPEFB by scanning electron microscopy. Moreover, the OPEFB pre-treated for 12 weeks has shown the highest in vitro digestibility of dry (77.20%) and organic (69.78%) matter, where they were enhanced by 104.07 and 96.29%, respectively, as compared to the untreated control. The enhancement in the in vitro ruminal digestibility was negatively correlated with the lignin content in the OPEFB. Therefore, biologically delignified OPEFB with G. lucidum fungal culture pre-treatment have the potential to be utilized as one of the ingredients for the development of a novel ruminant forage.
    Matched MeSH terms: Lignin/metabolism*
  4. Surendran A, Siddiqui Y, Saud HM, Ali NS, Manickam S
    J Appl Microbiol, 2018 Sep;125(3):876-887.
    PMID: 29786938 DOI: 10.1111/jam.13922
    AIM: Lignolytic (lignin degrading) enzyme, from oil palm pathogen Ganoderma boninense Pat. (Syn G. orbiforme (Ryvarden)), is involved in the detoxification and the degradation of lignin in the oil palm and is the rate-limiting step in the infection process of this fungus. Active inhibition of lignin-degrading enzymes secreted by G. boninense by various naturally occurring phenolic compounds and estimation of efficiency on pathogen suppression was aimed at.

    METHODS AND RESULTS: In our work, 10 naturally occurring phenolic compounds were evaluated for their inhibitory potential towards the lignolytic enzymes of G. boninense. Additionally, the lignin-degrading enzymes were characterized. Most of the peholic compounds exhibited an uncompetitive inhibition towards the lignin-degrading enzymes. Benzoic acid was the superior inhibitor to the production of lignin-degrading enzymes, when compared between the 10 phenolic compounds. The inhibitory potential of the phenolic compounds towards the lignin-degrading enzymes are higher than that of the conventional metal ion inhibitor. The lignin-degrading enzymes were stable in a wide range of pH but were sensitive to higher temperature.

    CONCLUSION: The study demonstrated the inhibitor potential of 10 naturally occurring phenolic compounds towards the lignin-degrading enzymes of G. boninense with different efficacies.

    SIGNIFICANCE AND IMPACT OF THE STUDY: The study has shed a light towards a new management strategy to control basal stem rot disease in oil palm. It serves as a replacement for the existing chemical control.

    Matched MeSH terms: Lignin/metabolism*
  5. Ismail KSK, Matano Y, Sakihama Y, Inokuma K, Nambu Y, Hasunuma T, et al.
    Bioresour Technol, 2022 Jan;343:126071.
    PMID: 34606923 DOI: 10.1016/j.biortech.2021.126071
    One of the potential bioresources for bioethanol production is Napier grass, considering its high cellulose and hemicellulose content. However, the cost of pretreatment hinders the bioethanol produced from being economical. This study examines the effect of hydrothermal process with dilute acid on extruded Napier grass, followed by enzymatic saccharification prior to simultaneous saccharification and co-fermentation (SScF). Extrusion facilitated lignin removal by 30.2 % prior to dilute acid steam explosion. Optimum pretreatment condition was obtained by using 3% sulfuric acid, and 30-min retention time of steam explosion at 190 °C. Ethanol yield of 0.26 g ethanol/g biomass (60.5% fermentation efficiency) was attained by short-term liquefaction and fermentation using a cellulose-hydrolyzing and xylose-assimilating Saccharomyces cerevisiae NBRC1440/B-EC3-X ΔPHO13, despite the presence of inhibitors. This proposed method not only reduced over-degradation of cellulose and hemicellulose, but also eliminated detoxification process and reduced cellulase loading.
    Matched MeSH terms: Lignin/metabolism
  6. Omar FN, Hafid HS, Samsu Baharuddin A, Mohammed MAP, Abdullah J
    Planta, 2017 Sep;246(3):567-577.
    PMID: 28620814 DOI: 10.1007/s00425-017-2717-5
    MAIN CONCLUSION: X-ray microtomography results revealed that delignification process damaged the oil palm fibers, which correlated well with reduction of lignin components and increase of the phenolic content. Biodegradation investigation of natural fibers normally focuses on physico-chemical analysis, with less emphasis on physical aspect like fiber structures affect from microbial activity. In this work, the performance of Pycnoporus sanguineus to delignify oil palm empty fruit bunch fibers through solid-state fermentation utilizing various ratio of POME sludge was reported. In addition to tensile testing, physico-chemical and X-ray microtomography (µ-CT) analyses on the oil palm fibers were conducted to determine the effectiveness of the degradation process. The best ratio of fiber to fungi (60:40) was chosen based on the highest lignin loss and total phenolic content values and further investigation was performed to obtain fermentation kinetics data of both laccase and manganese peroxidase. µ-CT results revealed that delignification process damaged the pre-treated and untreated fibers structure, as evident from volume reduction after degradation process. This is correlated with reduction of lignin component and increase of the phenolic content, as well as lower stress-strain curves of the pre-treated fibers compared to the untreated ones (from tensile testing). It is suggested that P. sanguineus preferred to consume the outer layer of the fiber, before it penetrates through the cellular structure of the inner fiber.
    Matched MeSH terms: Lignin/metabolism*
  7. Ma J, Ma NL, Fei S, Liu G, Wang Y, Su Y, et al.
    Environ Pollut, 2024 Apr 01;346:123646.
    PMID: 38402938 DOI: 10.1016/j.envpol.2024.123646
    Stover and manure are the main solid waste in agricultural industry. The generation of stover and manure could lead to serious environmental pollution if not handled properly. Composting is the potential greener solution to remediate and reduce agricultural solid waste, through which stover and manure could be remediated and converted into organic fertilizer, but the long composting period and low efficiency of humic substance production are the key constraints in such remediation approach. In this study, we explore the effect of lignocellulose selective removal on composting by performing chemical pretreatment on agricultural waste followed by utilization of biochar to assist in the remediation by co-composting treatment and reveal the impacts of different lignocellulose component on organic fertilizer production. Aiming to discover the key factors that influence humification during composting process and improve the composting quality as well as comprehensive utilization of agricultural solid waste. The results demonstrated that the removal of selective lignin or hemicellulose led to the shift of abundances lignocellulose-degrading bacteria, which in turn accelerated the degradation of lignocellulose by almost 51.2%. The process also facilitated the remediation of organic waste via humification and increased the humic acid level and HA/FA ratio in just 22 days. The richness of media relies on their lignocellulose content, which is negatively correlated with total nitrogen content, humic acid (HA) content, germination index (GI), and pH, but positively correlated with fulvic acid (FA) and total organic carbon (TOC). The work provides a potential cost effective and efficient framework for agricultural solid waste remediation and reduction.
    Matched MeSH terms: Lignin/metabolism
  8. Yasmin HAN, Kunasundari B, Shuit SH, Tompang MF
    Biotechnol Lett, 2024 Aug;46(4):559-569.
    PMID: 38748066 DOI: 10.1007/s10529-024-03494-z
    The effective recovery of the immobilized enzymes using magnetic carriers has led to growing interest in this technology. The objective of this research was to evaluate the efficiency of immobilized laccase on magnetized multiwall carbon nanotubes (m-MWCNTs) in terms of stability and reusability. Laccases were efficiently adsorbed onto magnetized multiwall carbon nanotubes (m-MWCNTs) synthesized using water. The concentration of 7 mg laccase/mL was found to be ideal for immobilization. The optimal activity of both free and immobilized laccases was observed at pH 5, while for the latter, the optimal temperature was shifted from 40 to 50 °C. Compared to the free laccase, the immobilized laccase exhibited a greater range of stability at more extreme temperatures. At the fourth cycle of reactions, the immobilized laccase exhibited more than 60% relative activity in terms of reusability. Based on the fourier-transform infrared spectroscopy (FTIR) peak at 2921 cm-1, saccharification of paddy straw using immobilized laccase verified lignin degradation. The easy recovery of the immobilized laccase on m-MWCNTs lends credence to its potential use in biomass hydrolysis.
    Matched MeSH terms: Lignin/metabolism
  9. Zamzuri NA, Abd-Aziz S, Rahim RA, Phang LY, Alitheen NB, Maeda T
    J Appl Microbiol, 2014 Apr;116(4):903-10.
    PMID: 24314059 DOI: 10.1111/jam.12410
    To isolate a bacterial strain capable of biotransforming ferulic acid, a major component of lignin, into vanillin and vanillic acid by a rapid colorimetric screening method.
    Matched MeSH terms: Lignin/metabolism
  10. Zainudin MHM, Hassan MA, Tokura M, Shirai Y
    Bioresour Technol, 2013 Nov;147:632-635.
    PMID: 24012093 DOI: 10.1016/j.biortech.2013.08.061
    The composting of lignocellulosic oil palm empty fruit bunch (OPEFB) with continuous addition of palm oil mill (POME) anaerobic sludge which contained nutrients and indigenous microbes was studied. In comparison to the conventional OPEFB composting which took 60-90 days, the rapid composting in this study can be completed in 40 days with final C/N ratio of 12.4 and nitrogen (2.5%), phosphorus (1.4%), and potassium (2.8%), respectively. Twenty-seven cellulolytic bacterial strains of which 23 strains were closely related to Bacillus subtilis, Bacillus firmus, Thermobifida fusca, Thermomonospora spp., Cellulomonas sp., Ureibacillus thermosphaericus, Paenibacillus barengoltzii, Paenibacillus campinasensis, Geobacillus thermodenitrificans, Pseudoxanthomonas byssovorax which were known as lignocellulose degrading bacteria and commonly involved in lignocellulose degradation. Four isolated strains related to Exiguobacterium acetylicum and Rhizobium sp., with cellulolytic and hemicellulolytic activities. The rapid composting period achieved in this study can thus be attributed to the naturally occurring cellulolytic and hemicellulolytic strains identified.
    Matched MeSH terms: Lignin/metabolism*
  11. Linggang S, Phang LY, Wasoh MH, Abd-Aziz S
    Appl Biochem Biotechnol, 2012 May;167(1):122-31.
    PMID: 22528646 DOI: 10.1007/s12010-012-9592-0
    Sago pith residue is one of the most abundant lignocellulosic biomass which can serve as an alternative cheap substrate for fermentable sugars production. This residue is the fibrous waste left behind after the starch extraction process and contains significant amounts of starch (58%), cellulose (23%), hemicellulose (9.2%) and lignin (3.9%). The conversion of sago pith residue into fermentable sugars is commonly performed using cellulolytic enzymes or known as cellulases. In this study, crude cellulases were produced by two local isolates, Trichoderma asperellum UPM1 and Aspergillus fumigatus, UPM2 using sago pith residue as substrate. A. fumigatus UPM2 gave the highest FPase, CMCase and β-glucosidase activities of 0.39, 23.99 and 0.78 U/ml, respectively, on day 5. The highest activity of FPase, CMCase and β-glucosidase by T. asperellum UPM1 was 0.27, 12.03 and 0.42 U/ml, respectively, on day 7. The crude enzyme obtained from A. fumigatus UPM2 using β-glucosidase as the rate-limiting enzyme (3.9, 11.7 and 23.4 IU) was used for the saccharification process to convert 5% (w/v) sago pith residue into reducing sugars. Hydrolysis of sago pith residue using crude enzyme containing β-glucosidase with 23.4 IU, produced by A. fumigatus UPM2 gave higher reducing sugars production of 20.77 g/l with overall hydrolysis percentage of 73%.
    Matched MeSH terms: Lignin/metabolism*
  12. Wang M, Han L, Liu S, Zhao X, Yang J, Loh SK, et al.
    Biotechnol J, 2015 Sep;10(9):1424-33.
    PMID: 26121186 DOI: 10.1002/biot.201400723
    Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed.
    Matched MeSH terms: Lignin/metabolism*
  13. Masran R, Zanirun Z, Bahrin EK, Ibrahim MF, Lai Yee P, Abd-Aziz S
    Appl Microbiol Biotechnol, 2016 Jun;100(12):5231-46.
    PMID: 27115758 DOI: 10.1007/s00253-016-7545-1
    Abundant lignocellulosic biomass from various industries provides a great potential feedstock for the production of value-added products such as biofuel, animal feed, and paper pulping. However, low yield of sugar obtained from lignocellulosic hydrolysate is usually due to the presence of lignin that acts as a protective barrier for cellulose and thus restricts the accessibility of the enzyme to work on the cellulosic component. This review focuses on the significance of biological pretreatment specifically using ligninolytic enzymes as an alternative method apart from the conventional physical and chemical pretreatment. Different modes of biological pretreatment are discussed in this paper which is based on (i) fungal pretreatment where fungi mycelia colonise and directly attack the substrate by releasing ligninolytic enzymes and (ii) enzymatic pretreatment using ligninolytic enzymes to counter the drawbacks of fungal pretreatment. This review also discusses the important factors of biological pretreatment using ligninolytic enzymes such as nature of the lignocellulosic biomass, pH, temperature, presence of mediator, oxygen, and surfactant during the biodelignification process.
    Matched MeSH terms: Lignin/metabolism*
  14. Tsuji Y, Vanholme R, Tobimatsu Y, Ishikawa Y, Foster CE, Kamimura N, et al.
    Plant Biotechnol J, 2015 Aug;13(6):821-32.
    PMID: 25580543 DOI: 10.1111/pbi.12316
    Bacteria-derived enzymes that can modify specific lignin substructures are potential targets to engineer plants for better biomass processability. The Gram-negative bacterium Sphingobium sp. SYK-6 possesses a Cα-dehydrogenase (LigD) enzyme that has been shown to oxidize the α-hydroxy functionalities in β-O-4-linked dimers into α-keto analogues that are more chemically labile. Here, we show that recombinant LigD can oxidize an even wider range of β-O-4-linked dimers and oligomers, including the genuine dilignols, guaiacylglycerol-β-coniferyl alcohol ether and syringylglycerol-β-sinapyl alcohol ether. We explored the possibility of using LigD for biosynthetically engineering lignin by expressing the codon-optimized ligD gene in Arabidopsis thaliana. The ligD cDNA, with or without a signal peptide for apoplast targeting, has been successfully expressed, and LigD activity could be detected in the extracts of the transgenic plants. UPLC-MS/MS-based metabolite profiling indicated that levels of oxidized guaiacyl (G) β-O-4-coupled dilignols and analogues were significantly elevated in the LigD transgenic plants regardless of the signal peptide attachment to LigD. In parallel, 2D NMR analysis revealed a 2.1- to 2.8-fold increased level of G-type α-keto-β-O-4 linkages in cellulolytic enzyme lignins isolated from the stem cell walls of the LigD transgenic plants, indicating that the transformation was capable of altering lignin structure in the desired manner.
    Matched MeSH terms: Lignin/metabolism*
  15. Lee HV, Hamid SB, Zain SK
    ScientificWorldJournal, 2014;2014:631013.
    PMID: 25247208 DOI: 10.1155/2014/631013
    Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate's application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein.
    Matched MeSH terms: Lignin/metabolism
  16. Shukor H, Al-Shorgani NK, Abdeshahian P, Hamid AA, Anuar N, Rahman NA, et al.
    Bioresour Technol, 2014 Oct;170:565-73.
    PMID: 25171212 DOI: 10.1016/j.biortech.2014.07.055
    Palm kernel cake (PKC) was used for biobutanol production by Clostridium saccharoperbutylacetonicum N1-4 in acetone-butanol-ethanol (ABE) fermentation. PKC was subjected to acid hydrolysis pretreatment and hydrolysates released were detoxified by XAD-4 resin. The effect of pH, temperature and inoculum size on butanol production was evaluated using an empirical model. Twenty ABE fermentations were run according to an experimental design. Experimental results revealed that XAD-4 resin removed 50% furfural and 77.42% hydroxymethyl furfural. The analysis of the empirical model showed that linear effect of inoculums size with quadratic effect of pH and inoculum size influenced butanol production at 99% probability level (P<0.01). The optimum conditions for butanol production were pH 6.28, temperature of 28°C and inoculum size of 15.9%. ABE fermentation was carried out under optimum conditions which 0.1g/L butanol was obtained. Butanol production was enhanced by diluting PKC hydrolysate up to 70% in which 3.59g/L butanol was produced.
    Matched MeSH terms: Lignin/metabolism*
  17. Gunny AA, Arbain D, Edwin Gumba R, Jong BC, Jamal P
    Bioresour Technol, 2014 Mar;155:177-81.
    PMID: 24457303 DOI: 10.1016/j.biortech.2013.12.101
    Ionic liquids (ILs) have been used as an alternative green solvent for lignocelluloses pretreatment. However, being a salt, ILs exhibit an inhibitory effect on cellulases activity, thus making the subsequent saccharification inefficient. The aim of the present study is to produce salt-tolerant cellulases, with the rationale that the enzyme also tolerant to the presence of ILs. The enzyme was produced from a locally isolated halophilic strain and was characterized and assessed for its tolerance to different types of ionic liquids. The results showed that halophilic cellulases produced from Aspergillus terreus UniMAP AA-6 exhibited higher tolerance to ILs and enhanced thermo stability in the presence of high saline conditions.
    Matched MeSH terms: Lignin/metabolism*
  18. Ya'aini N, Amin NA, Asmadi M
    Bioresour Technol, 2012 Jul;116:58-65.
    PMID: 22609656 DOI: 10.1016/j.biortech.2012.03.097
    Conversion of glucose, empty fruit bunch (efb) and kenaf to levulinic acid over a new hybrid catalyst has been investigated in this study. The characterization and catalytic performance results revealed that the physico-chemical properties of the new hybrid catalyst comprised of chromium chloride and HY zeolite increased the levulinic acid production from glucose compared to the parent catalysts. Optimization of the glucose conversion process using two level full factorial designs (2(3)) with two center points reported 55.2% of levulinic acid yield at 145.2 °C, 146.7 min and 12.0% of reaction temperature, reaction time and catalyst loading, respectively. Subsequently, the potential of efb and kenaf for producing levulinic acid at the optimum conditions was established after 53.2% and 66.1% of efficiencies were reported. The observation suggests that the hybrid catalyst has a potential to be used in biomass conversion to levulinic acid.
    Matched MeSH terms: Lignin/metabolism*
  19. Muhammad N, Man Z, Bustam MA, Mutalib MI, Wilfred CD, Rafiq S
    Appl Biochem Biotechnol, 2011 Oct;165(3-4):998-1009.
    PMID: 21720837 DOI: 10.1007/s12010-011-9315-y
    In the present work, the dissolution of bamboo biomass was tested using a number of ionic liquids synthesized in laboratory. It was observed that one of the synthesized amino acid-based ionic liquids, namely 1-ethyl-3-methylimidazolium glycinate, was capable of dissolving the biomass completely. The dissolved biomass was then regenerated using a reconstitute solvent (acetone/water) and was characterized using Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The results were compared to preconditioned bamboo biomass. The regenerated biomass was found to have a more homogenous macrostructure, which indicates that the crystalline form and structure of its cellulose has changed from type Ι to type ΙΙ during the dissolution and regeneration process.
    Matched MeSH terms: Lignin/metabolism*
  20. Chin KL, H'ng PS, Wong LJ, Tey BT, Paridah MT
    Bioresour Technol, 2010 May;101(9):3287-91.
    PMID: 20056407 DOI: 10.1016/j.biortech.2009.12.036
    Ethanolic fermentation using Saccharomyces cerevisiae was carried out on three types of hydrolysates produced from lignocelulosic biomass which are commonly found in Malaysia such as oil palm trunk, rubberwood and mixed hardwood. The effect of fermentation temperature and pH of hydrolysate was evaluated to optimize the fermentation efficiency which defined as maximum ethanol yield in minimum fermentation time. The fermentation process using different temperature of 25 degrees Celsius, 30 degrees Celsius and 40 degrees Celsius were performed on the prepared fermentation medium adjusted to pH 4, pH 6 and pH 7, respectively. Results showed that the fermentation time was significantly reduced with the increase of temperature but an adverse reduction in ethanol yield was observed using temperature of 40 degrees Celsius. As the pH of hydrolysate became more acidic, the ethanol yield increased. Optimum fermentation efficiency for ethanolic fermentation of lignocellulosic hydrolysates using S. cerevisiae can be obtained using 33.2 degrees Celsius and pH 5.3.
    Matched MeSH terms: Lignin/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links