Displaying all 7 publications

Abstract:
Sort:
  1. Clark CS, Rampal KG, Thuppil V, Roda SM, Succop P, Menrath W, et al.
    Environ Res, 2009 Oct;109(7):930-6.
    PMID: 19656507 DOI: 10.1016/j.envres.2009.07.002
    In 2006 a report on the analysis for lead in 80 new residential paints from four countries in Asia revealed high levels in three of the countries (China, India and Malaysia) and low levels in a fourth country (Singapore) where a lead in paint regulation was enforced. The authors warned of the possible export of lead-painted consumer products to the United States and other countries and the dangers the lead paint represented to children in the countries where it was available for purchase. The need for a worldwide ban on the use of lead in paints was emphasized to prevent an increase in exposure and disease from this very preventable environmental source. Since the earlier paper almost 300 additional new paint samples have been collected from the four initial countries plus 8 additional countries, three from Asia, three from Africa and two from South America. During the intervening time period two million toys and other items imported into the United States were recalled because the lead content exceeded the United States standard. High lead paints were detected in all 12 countries. The average lead concentration by country ranged from 6988 (Singapore) to 31,960ppm (Ecuador). One multinational company sold high lead paint in one country through January 2007 but sold low lead paint later in 2007 indicating that a major change to cease adding lead to their paints had occurred. However, the finding that almost one-third of the samples would meet the new United States standard for new paint of 90ppm, suggests that the technology is already available in at least 11 of the 12 countries to produce low lead enamel paints for domestic use. The need remains urgent to establish effective worldwide controls to prevent the needless poisoning of millions of children from this preventable exposure.
    Matched MeSH terms: Lead Poisoning/prevention & control
  2. Nasir HM, Kassim MS, Malinee T, Khairul AM, Low BH
    Med J Malaysia, 1993 Sep;48(3):361-3.
    PMID: 8183154
    We report here a case of lead poisoning in a 20 month old girl who presented with acute encephalopathy and status epilepticus. The major clues leading to the diagnosis were the occupational family history and dense lead lines on X-ray of the long bones. She showed evidence of neurological dysfunction in the initial phase, but she improved steadily, regaining her motor power partially and her vision, although some cognitive and language deficits were already evident. She will need long-term neurological assessment and evaluation to ascertain the extent of permanent brain damage.
    Matched MeSH terms: Lead Poisoning/prevention & control
  3. Aroua MK, Leong SP, Teo LY, Yin CY, Daud WM
    Bioresour Technol, 2008 Sep;99(13):5786-92.
    PMID: 18023577
    In this study, the kinetics of adsorption of Pb(II) from aqueous solution onto palm shell-based activated carbon (PSAC) were investigated by employing ion selective electrode (ISE) for real-time Pb(II) and pH monitoring. Usage of ISE was very appropriate for real-time adsorption kinetics data collection as it facilitated recording of adsorption data at very specific and short time intervals as well as provided consistent kinetics data. Parameters studied were initial Pb(II) concentration and agitation speed. It was found that increases in initial Pb(II) concentration and agitation speed resulted in higher initial rate of adsorption. Pseudo first-order, pseudo second-order, Elovich, intraparticle diffusion and liquid film diffusion models were used to fit the adsorption kinetics data. It was suggested that chemisorption was the rate-controlling step for adsorption of Pb(II) onto PSAC since the adsorption kinetics data fitted both the pseudo second-order and Elovich models well.
    Matched MeSH terms: Lead Poisoning/prevention & control
  4. Clark CS, Rampal KG, Thuppil V, Chen CK, Clark R, Roda S
    Environ Res, 2006 Sep;102(1):9-12.
    PMID: 16782088
    Worldwide prohibitions on lead gasoline additives were a major international public health accomplishment, the results of which are still being documented in parts of the world. Although the need to remove lead from paints has been recognized for over a century, evidence reported in this article indicates that lead-based paints for household use, some containing more than 10% lead, are readily available for purchase in some of the largest countries in the world. Sixty-six percent of new paint samples from China, India, and Malaysia were found to contain 5000 ppm (0.5%) or more of lead, the US definition of lead-based paint in existing housing, and 78% contained 600 ppm (0.06%) or more, the limit for new paints. In contrast, the comparable levels in a nearby developed country, Singapore, were 0% and 9%. In examining lead levels in paints of the same brands purchased in different countries, it was found that some brands had lead-based paints in one of the countries and paints meeting US limits in another; another had lead-free paint available in all countries where samples were obtained. Lead-based paints have already poisoned millions of children and likely will cause similar damage in the future as paint use increases as countries in Asia and elsewhere continue their rapid development. The ready availability of lead-based paints documented in this article provides stark evidence of the urgent need for efforts to accomplish an effective worldwide ban on the use of lead in paint.
    Matched MeSH terms: Lead Poisoning/prevention & control*
  5. Mokhtar MB, Awaluddin AB, Yusof AB, Bakar BB
    Bull Environ Contam Toxicol, 2002 Jul;69(1):8-14.
    PMID: 12053250
    Matched MeSH terms: Lead Poisoning/prevention & control
  6. Dewanjee S, Dua TK, Khanra R, Das S, Barma S, Joardar S, et al.
    PLoS One, 2015;10(10):e0139831.
    PMID: 26473485 DOI: 10.1371/journal.pone.0139831
    BACKGROUND: Ipomoea aquatica (Convolvulaceae), an aquatic edible plant, is traditionally used against heavy metal toxicity in India. The current study intended to explore the protective role of edible (aqueous) extract of I. aquatica (AEIA) against experimentally induced Pb-intoxication.

    METHODS: The cytoprotective role of AEIA was measured on mouse hepatocytes by cell viability assay followed by Hoechst staining and flow cytometric assay. The effect on ROS production, lipid peroxidation, protein carbonylation, intracellular redox status were measured after incubating the hepatocytes with Pb-acetate (6.8 μM) along with AEIA (400 μg/ml). The effects on the expressions of apoptotic signal proteins were estimated by western blotting. The protective role of AEIA was measured by in vivo assay in mice. Haematological, serum biochemical, tissue redox status, Pb bioaccumulation and histological parameters were evaluated to estimate the protective role of AEIA (100 mg/kg) against Pb-acetate (5 mg/kg) intoxication.

    RESULTS: Pb-acetate treated hepatocytes showed a gradual reduction of cell viability dose-dependently with an IC50 value of 6.8 μM. Pb-acetate treated hepatocytes exhibited significantly enhanced levels (p < 0.01) of ROS production, lipid peroxidation, protein carbonylation with concomitant depletion (p < 0.01) of antioxidant enzymes and GSH. However, AEIA treatment could significantly restore the aforementioned parameters in murine hepatocytes near to normalcy. Besides, AEIA significantly reversed (p < 0.05-0.01) the alterations of transcription levels of apoptotic proteins viz. Bcl 2, Bad, Cyt C, Apaf-1, cleaved caspases [caspase 3, caspase 8 and caspase 9], Fas and Bid. In in vivo bioassay, Pb-acetate treatment caused significantly high intracellular Pb burden and oxidative pressure in the kidney, liver, heart, brain and testes in mice. In addition, the haematological and serum biochemical factors were changed significantly in Pb-acetate-treated animals. AEIA treatment restored significantly the evaluated-parameters to the near-normal position.

    CONCLUSION: The extract may offer the protective effect via counteracting with Pb mediated oxidative stress and/or promoting the elimination of Pb by chelating. The presence of substantial quantities of flavonoids, phenolics and saponins would be responsible for the overall protective effect.

    Matched MeSH terms: Lead Poisoning/prevention & control*
  7. Haleagrahara N, Jackie T, Chakravarthi S, Rao M, Pasupathi T
    Food Chem Toxicol, 2010 Oct;48(10):2688-94.
    PMID: 20600524 DOI: 10.1016/j.fct.2010.06.041
    Several environmental toxins with toxic effects to the bone marrow have been identified. Pathology associated with lead intoxication is due to the cellular damage mediated by free radicals. In the current study, we examined the effect of Etlingera elatior extract on lead-induced changes in the oxidative biomarkers and histology of bone marrow of rats. Sprague-Dawley rats were exposed to 500 ppm lead acetate in their drinking water for 14 days. E. elatior extract was treated orally (100mg/kg body weight) in combination with, or after lead acetate treatment. The results showed that there was a significant increase in lipid hydroperoxide, protein carbonyl content and a significant decrease in total antioxidants, super oxide dismutase, glutathione peroxidase and glutathione--S-transferase in bone marrow after lead acetate exposure. Treatment with E. elatior decreased lipid hydroperoxides and protein carbonyl contents and significantly increased total antioxidants and antioxidant enzymes. Treatments with E. elatior extract also reduced, lead-induced histopathological damage in bone marrow. In conclusion, these data suggest that E. elatior has a powerful antioxidant effect, and it protects the lead acetate-induced bone marrow oxidative damage in rats.
    Matched MeSH terms: Lead Poisoning/prevention & control*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links