Displaying all 8 publications

Abstract:
Sort:
  1. Shahrul Hisham Zainal Ariffin, Nurfathiha Abu Kasim, Rohaya Megat Abdul Wahab, Abdul Aziz Jemain
    Sains Malaysiana, 2013;42:99-105.
    The aim of this study was to observe the pattern of lactate dehydrogenase (LDH) activity in GCF and the rate of tooth movement at two different orthodontic forces (1.0 N and 1.5 N). Twelve subjects participated in this study and was chosen based on the inclusion criteria. Each subject received forces of 1.0 N and 1.5 N for tooth movement either on the left or right side of the maxillary canine. GCF sample was collected at mesial and distal sites of the canines before applying the appliance (week 0) and every week for 5 weeks after tooth movement (week 1 to week 5) where baseline activity served as control. LDH activity was assayed spectrophotometically at 340 nm. The tooth movements were measured from casted study models. LDH specific activity at mesial sites in 1.0 N and 1.5 N force groups, respectively increased significantly (p<0.05) only on week four and throughout the treatment when compared with baseline. At distal sites, LDH specific activity with 1.5 N was higher than 1.0 N throughout the five weeks of tooth movement. LDH specific activity with 1.5 N force increased at both mesial (week 2) and distal sites (week 3) with significant different (p<0.05) when compared with 1.0 N force. Tooth movement with 1.5 N showed significantly faster (p<0.05) at the end of week 5 when compared with 1.0 N. LDH has the potential as a biological marker of inflammation during tooth movement.A force of 1 N was more suitable to be used although less tooth movement was produced because less inflammation caused by the force can be useful in orthodontic treatment for patients with stabilised periodontal diseases compared with 1.5 N force.
    Matched MeSH terms: Lactate Dehydrogenases
  2. Wan Omar Abdullah, Ngah Zasmy Unyah, Rukman Awang Hamat, Baharudin Omar, Mohamed Kamel Abd Ghani, Mohammad Rayani, et al.
    MyJurnal
    Dichloromethane and methanolic extracts of each plant were tested for their antiplasmodial activity on chloroquineresistant strain of Plasmodium falciparum (FCB strain), based on lactate dehydrogenase activity. Cytotoxicity was assessed with the MTT test on MRC-5 human diploid embryonic lung cells. Most extracts of ten selected plants used in Malay traditional medicine in Malaysia had activity in vitro. This supports continued investigations of traditional medicine in the search for new antimalarial agent. The compounds responsible for the observed antiplasmodial effects are under investigation.
    Matched MeSH terms: Lactate Dehydrogenases
  3. Wanandi SI, Ningsih SS, Asikin H, Hosea R, Neolaka GMG
    Malays J Med Sci, 2018 May;25(3):7-16.
    PMID: 30899183 DOI: 10.21315/mjms2018.25.3.2
    The growth of tumour cells is closely related to cancer-associated fibroblasts (CAFs) present within their microenvironment. CAFs, the most abundant cells in tumour stroma, secrete growth factors that play pivotal roles in tumour cell proliferation, metabolism, angiogenesis and metastasis. Tumour cells adapt to rapid environmental changes from normoxia to hypoxia through metabolic interplay with CAFs. In this mini review, we discuss the role of lactate dehydrogenases (LDHs) and monocarboxylate transporters (MCTs) on the metabolic interplay between tumour cells and CAFs under hypoxia compared to normoxia. The LDHs catalyse the interchange of lactate and pyruvate, whereas MCTs facilitate the influx and efflux of monocarboxylates, especially lactate and pyruvate. To sum up, tumour cells switch their metabolic state between glycolysis and oxidative phosphorylation through metabolic interplay with CAFs, which exhibit the Warburg effect under hypoxia and reverse Warburg effect under normoxia.
    Matched MeSH terms: Lactate Dehydrogenases
  4. Hayyan M, Looi CY, Hayyan A, Wong WF, Hashim MA
    PLoS One, 2015;10(2):e0117934.
    PMID: 25679975 DOI: 10.1371/journal.pone.0117934
    The cytotoxic potential of ammonium-based deep eutectic solvents (DESs) with four hydrogen bond donors, namely glycerine (Gl), ethylene glycol (EG), triethylene glycol (TEG) and urea (U) were investigated. The toxicity of DESs was examined using In Vitro cell lines and In Vivo animal model. IC50 and selectivity index were determined for the DESs, their individual components and their combinations as aqueous solutions for comparison purposes. The cytotoxicity effect of DESs varied depending on cell lines. The IC50 for the GlDES, EGDES, UDES and TEGDES followed the sequence of TEGDES< GlDES< EGDES< UDES for OKF6, MCF-7, A375, HT29 and H413, respectively. GlDES was selective against MCF-7 and A375, EGDES was selective against MCF-7, PC3, HepG2 and HT29, UDES was selective against MCF-7, PC3, HepG2 and HT29, and TEGDES was selective against MCF-7 and A375. However, acute toxicity studies using ICR mice showed that these DESs were relatively toxic in comparison to their individual components. DES did not cause DNA damage, but it could enhance ROS production and induce apoptosis in treated cancer cells as evidenced by marked LDH release. Furthermore, the examined DESs showed less cytotoxicity compared with ionic liquids. To the best of our knowledge, this is the first time that combined In Vitro and In Vivo toxicity profiles of DESs were being demonstrated, raising the toxicity issue of these neoteric mixtures and their potential applicability to be used for therapeutic purposes.
    Matched MeSH terms: Lactate Dehydrogenases/biosynthesis
  5. Ait Abderrahim L, Taïbi K, Abderrahim NA, Alomery AM, Abdellah F, Alhazmi AS, et al.
    Toxicon, 2019 Aug 26;169:38-44.
    PMID: 31465783 DOI: 10.1016/j.toxicon.2019.08.005
    Microcystin Leucine-Arginine (MC-LR) is a toxin produced by the cyanobacteria Microcystis aeruginosa. It is the most encountered and toxic type of cyanotoxins. Oxidative stress was shown to play a role in the pathogenesis of microcystin LR by the induction of intracellular reactive oxygen species (ROS) formation that oxidize and damage cellular macromolecules. In the present study we examined the effect of acute MC-LR dose on the cardiac muscle of BALB/c mice. Afterwards, melatonin and N-acetyl cysteine (NAC) were assayed and evaluated as potential protective and antioxidant agents against damages generated by MC-LR. For this purpose, thirty mice were assigned into six groups of five mice each. The effect of MC-LR was first compared to the control group supplied with distilled water, then compared to the other groups supplied with melatonin and NAC. The experiment lasted 10 days after which animals were euthanized. Biomarkers of toxicity such as alkaline phosphatase activity, lipid peroxidation, protein carbonyl content, reduced glutathione content, serum lactate dehydrogenase and serum sorbitol dehydrogenase were assayed. Results showed that toxin treated mice have experienced significant oxidative damage in their myocardial tissue as revealed by noticeable levels of oxidative stress biomarkers and by the reduction in alkaline phosphatase activity. Whereas, melatonin and NAC treated mice manifested lesser oxidative damages. Our findings suggest a potential therapeutic use of melatonin and N-acetyl cysteine as antioxidant protective agents against oxidative damage induced by MC-LR.
    Matched MeSH terms: Lactate Dehydrogenases
  6. Jeyamogan S, Khan NA, Anwar A, Shah MR, Siddiqui R
    SAGE Open Med, 2018;6:2050312118781962.
    PMID: 30034805 DOI: 10.1177/2050312118781962
    Objectives: To synthesize novel compounds belonging to Benzodioxane, Naphthalene diimide, Aminophenol derivatives and Porphyrin classes and test their potential anticancer properties.

    Methods: Several compounds were synthesized and their molecular identity was confirmed using nuclear magnetic resonance. Potential anticancer properties were determined using cytopathogenicity assays and growth inhibition assays using cervical cancer cells (HeLa). Cells were incubated with different concentrations of compounds belonging to Benzodioxane, Naphthalene diimide, Aminophenol derivatives and Porphyrins and effects were determined. HeLa cells cytopathogenicity was determined by measuring lactate dehydrogenase release using cytotoxicity detection assay. Growth inhibition assays were performed by incubating 50% semi-confluent HeLa cells with Benzodioxane, Naphthalene diimide, Aminophenol derivatives and Porphyrin compounds and HeLa cell proliferation was observed. Growth inhibition and host cell death were compared in the presence and absence of drugs.

    Results: Cytopathogenicity assays showed that the selected compounds were cytotoxic against HeLa cells, killing up to 90% of cells. Growth inhibition assays exhibited 100% growth inhibition. These effects are likely via oxidative stress, production of reactive oxygen species, changes in cytosolic and intracellular calcium/adenine nucleotide homeostasis, inhibition of ribonucleotide reductase/cyclooxygenase and/or glutathione depletion.

    Conclusions: Benzodioxane, Naphthalene diimide, Aminophenol derivatives and Porphyrins exhibited potent anticancer properties. These findings are promising and should pave the way in the rationale development of anticancer drugs. Using different cancer cell lines, future studies will determine their potential as anti-tumour agents as well as their precise molecular mode of action.

    Matched MeSH terms: Lactate Dehydrogenases
  7. Ramalingam A, Siti Balkis Budin, Lim Yc, Lislivia Si Yn, Satirah Zainalabidin
    Sains Malaysiana, 2016;45:1131-1137.
    UKMR-1, a local variant of mutant Roselle strain (Hibiscus sabdariffa) is enriched with free radical scavenging polyphenols
    such as anthocyanin, vitamin C and hydroxycitric acid. However, pharmacological actions of UKMR-1 are not fully known.
    This study was conducted to determine whether supplementation of aqueous UKMR-1 calyx extract was able to protect
    against nicotine-induced cardiac injury in rats. In this experimental study, healthy male albino rats were randomly
    allotted into three groups (n=7 per group): control, nicotine and UKMR-1+Nicotine groups. Nicotine (0.6 mg/kg, i.p.)
    was administered to both nicotine and UKMR-1+Nicotine groups for 28 consecutive days. UKMR-1+Nicotine group also
    received 100 mg/kg UKMR-1 extract orally via gavage 30 min prior to nicotine injection, daily. UKMR-1+Nicotine group
    had significantly (p<0.05) higher lactate dehydrogenase (LDH) activity, as well as lower malondialdehyde content in
    heart tissue homogenate than nicotine group, suggesting its cardio protective activity by inhibition of lipid peroxidation.
    UKMR-1 also lowered (p<0.05) the blood pressure in nicotine-administered rats. In addition, UKMR-1 significantly (p<0.05)
    restored activities of cytosolic superoxide dismutase, glutathione peroxidase and glutathione-S-transferase as well as
    redox balance ratio (GSH:GSSG). In conclusion, UKMR-1 was a
    Matched MeSH terms: Lactate Dehydrogenases
  8. Teoh CS, Goh AS
    Case Rep Transplant, 2021;2021:8831125.
    PMID: 33552611 DOI: 10.1155/2021/8831125
    A middle-aged gentleman who was diagnosed with high-risk chronic lymphocytic leukaemia (CLL), Rai stage IV, Binet C with del(17p) and del(13q) underwent allogeneic haematopoeitic stem cell transplantation (allo-HSCT) from a human leukocyte antigen (HLA) identical sister. The patient developed extensive skin, oral, and liver chronic graft versus host disease (GVHD) required tacrolimus, mycophenolate mofetil (MMF), and prednisolone. At seventh month after allo-HSCT, the patient presented with systemic symptoms, right cervical lymphadenopathy, splenomegaly, marked pancytopaenia, and elevated lactate dehydrogenase (LDH). Bone marrow study, immunophenotyping (IP), chromosome analysis, and PET-CT scan confirmed relapsed CLL with no evidence of Richter's transformation or posttransplant lymphoproliferative disease (PTLD). Withdrawal of immunosuppressant (IS) worsened cutaneous and liver GVHD. Chemotherapy was not a suitable treatment option in view of immunodeficiency. The patient underwent extracorporeal photopheresis (ECP) therapy eventually for extensive chronic GVHD, and the IS were gradually tapered to the minimal effective dose. The relapsed CLL was treated successfully with oral venetoclax accessible via a compassionate drug program. This case highlights challenges in managing relapsed CLL and loss of graft-versus-leukaemia (GVL) effect despite extensive chronic GVHD. Venetoclax is an effective and well-tolerated oral novel agent for relapsed CLL after allo-HSCT.
    Matched MeSH terms: Lactate Dehydrogenases
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links