Displaying all 6 publications

Abstract:
Sort:
  1. Siran R, Ahmad AH, Abdul Aziz CB, Ismail Z
    J Physiol Biochem, 2014 Dec;70(4):877-89.
    PMID: 25218926 DOI: 10.1007/s13105-014-0356-x
    REM sleep is a crucial component of sleep. Animal studies indicate that rapid eye movement (REM) sleep deprivation elicits changes in gene expression. Down regulatory antagonist modulator (DREAM) is a protein which downregulates other gene transcriptions by binding to the downstream response element site. The aim of this study is to examine the effect of REM sleep deprivation on DREAM expression in ventrobasal thalamic nuclei (VB) of rats. Seventy-two male Sprague-Dawley rats were divided into four major groups consisting of free-moving control rats (FMC) (n = 18), 72-h REM sleep-deprived rats (REMsd) (n = 18), 72-h REM sleep-deprived rats with 72-h sleep recovery (RG) (n = 18), and tank control rats (TC) (n = 18). REM sleep deprivation was elicited using the inverted flower pot technique. DREAM expression was examined in VB by immunohistochemical, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR) studies. The DREAM-positive neuronal cells (DPN) were decreased bilaterally in the VB of rats deprived of REM sleep as well as after sleep recovery. The nuclear DREAM extractions were increased bilaterally in animals deprived of REM sleep. The DREAM messenger RNA (mRNA) levels were decreased after sleep recovery. The results demonstrated a link between DREAM expression and REM sleep deprivation as well as sleep recovery which may indicate potential involvement of DREAM in REM sleep-induced changes in gene expression, specifically in nociceptive processing.
    Matched MeSH terms: Kv Channel-Interacting Proteins/metabolism*
  2. Ismail CAN, Suppian R, Ab Aziz CB, Long I
    Neuropeptides, 2020 Feb;79:102003.
    PMID: 31902597 DOI: 10.1016/j.npep.2019.102003
    The complications of diabetic polyneuropathy (DN) determines its level of severity. It may occur with distinctive clinical symptoms (painful DN) or appears undetected (painless DN). This study aimed to investigate microglia activation and signalling molecules brain-derived neurotrophic factor (BDNF) and downstream regulatory element antagonist modulator (DREAM) proteins in spinal cord of streptozotocin-induced diabetic neuropathy rats. Thirty male Sprague-Dawley rats (200-230 g) were randomly assigned into three groups: (1) control, (2) painful DN and (3) painless DN. The rats were induced with diabetes by single intraperitoneal injection of streptozotocin (60 mg/kg) whilst control rats received citrate buffer as a vehicle. Four weeks post-diabetic induction, the rats were induced with chronic inflammatory pain by intraplantar injection of 5% formalin and pain behaviour responses were recorded and assessed. Three days later, the rats were sacrificed and lumbar enlargement region of spinal cord was collected. The tissue was immunoreacted against OX-42 (microglia), BDNF and DREAM proteins, which was also quantified by western blotting. The results demonstrated that painful DN rats exhibited increased pain behaviour score peripherally and centrally with marked increase of spinal activated microglia, BDNF and DREAM proteins expressions compared to control group. In contrast, painless DN group demonstrated a significant reduction of pain behaviour score peripherally and centrally with significant reduction of spinal activated microglia, BDNF and DREAM proteins expressions. In conclusions, the spinal microglia activation, BDNF and DREAM proteins correlate with the pain behaviour responses between the variants of DN.
    Matched MeSH terms: Kv Channel-Interacting Proteins/metabolism*
  3. Long I, Suppian R, Ismail Z
    Neurochem Res, 2011 Mar;36(3):533-9.
    PMID: 21188515 DOI: 10.1007/s11064-010-0375-0
    Downstream Regulatory Element Antagonist Modulator (DREAM) protein modulates pain by regulating prodynorphin gene transcription. Therefore, we investigate the changes of mRNA and DREAM protein in relation to the mRNA and prodynorphin protein expression on the ipsilateral side of the rat spinal cord after formalin injection (acute pain model). DREAM like immunoreactivity (DLI) was not significantly different between C and F groups. However, we detected the upregulation of mean relative DREAM protein level in the nuclear but not in the cytoplasmic extract in the F group. These effects were consistent with the upregulation of the relative DREAM mRNA level. Prodynorphin like immunoreactivity (PLI) expression increased but the relative prodynorphin mRNA level remained unchanged. In conclusion, we suggest that upregulation of DREAM mRNA and protein expression in the nuclear compartment probably has functional consequences other than just the repression of prodynorphin gene. It is likely that these mechanisms are important in the modulation of pain.
    Matched MeSH terms: Kv Channel-Interacting Proteins/metabolism*
  4. Abd Rashid N, Hapidin H, Abdullah H, Ismail Z, Long I
    Brain Behav, 2017 06;7(6):e00704.
    PMID: 28638710 DOI: 10.1002/brb3.704
    INTRODUCTION: REM sleep deprivation is associated with impairment in learning and memory, and nicotine treatment has been shown to attenuate this effect. Recent studies have demonstrated the importance of DREAM protein in learning and memory processes. This study investigates the association of DREAM protein in REM sleep-deprived rats hippocampus upon nicotine treatment.

    METHODS: Male Sprague Dawley rats were subjected to normal condition, REM sleep deprivation and control wide platform condition for 72 hr. During this procedure, saline or nicotine (1 mg/kg) was given subcutaneously twice a day. Then, Morris water maze (MWM) test was used to assess learning and memory performance of the rats. The rats were sacrificed and the brain was harvested for immunohistochemistry and Western blot analysis.

    RESULTS: MWM test found that REM sleep deprivation significantly impaired learning and memory performance without defect in locomotor function associated with a significant increase in hippocampus DREAM protein expression in CA1, CA2, CA3, and DG regions and the mean relative level of DREAM protein compared to other experimental groups. Treatment with acute nicotine significantly prevented these effects and decreased expression of DREAM protein in all the hippocampus regions but only slightly reduce the mean relative level of DREAM protein.

    CONCLUSION: This study suggests that changes in DREAM protein expression in CA1, CA2, CA3, and DG regions of rat's hippocampus and mean relative level of DREAM protein may involve in the mechanism of nicotine treatment-prevented REM sleep deprivation-induced learning and memory impairment in rats.

    Matched MeSH terms: Kv Channel-Interacting Proteins/metabolism*
  5. Nor Rashid N, Yusof R, Watson RJ
    J Gen Virol, 2011 Nov;92(Pt 11):2620-2627.
    PMID: 21813705 DOI: 10.1099/vir.0.035352-0
    Human papillomaviruses (HPVs) with tropism for mucosal epithelia are the major aetiological factors in cervical cancer. Most cancers are associated with so-called high-risk HPV types, in particular HPV16, and constitutive expression of the HPV16 E6 and E7 oncoproteins is critical for malignant transformation in infected keratinocytes. E6 and E7 bind to and inactivate the cellular tumour suppressors p53 and Rb, respectively, thus delaying differentiation and inducing proliferation in suprabasal keratinocytes to enable HPV replication. One member of the Rb family, p130, appears to be a particularly important target for E7 in promoting S-phase entry. Recent evidence indicates that p130 regulates cell-cycle progression as part of a large protein complex termed DREAM. The composition of DREAM is cell cycle-regulated, associating with E2F4 and p130 in G0/G1 and with the B-myb transcription factor in S/G2. In this study, we addressed whether p130-DREAM is disrupted in HPV16-transformed cervical cancer cells and whether this is a critical function for E6/E7. We found that p130-DREAM was greatly diminished in HPV16-transformed cervical carcinoma cells (CaSki and SiHa) compared with control cell lines; however, when E6/E7 expression was targeted by specific small hairpin RNAs, p130-DREAM was reformed and the cell cycle was arrested. We further demonstrated that the profound G1 arrest in E7-depleted CaSki cells was dependent on p130-DREAM reformation by also targeting the expression of the DREAM component Lin-54 and p130. The results show that continued HPV16 E6/E7 expression is necessary in cervical cancer cells to prevent cell-cycle arrest by a repressive p130-DREAM complex.
    Matched MeSH terms: Kv Channel-Interacting Proteins/metabolism*
  6. Rashid NN, Yusof R, Watson RJ
    Anticancer Res, 2014 Nov;34(11):6557-63.
    PMID: 25368258
    It is well-established that HPV E7 proteins, encoded by human papillomavirus (HPV) genes, frequently associated with cervical cancers bind avidly to the retinoblastoma (RB) family of pocket proteins and disrupt their association with members of the E2F transcription factor family. Our previous study showed that the repressive p130-dimerization partner, RB-like, E2F and multi-vulval class (DREAM) complex was disrupted by HPV16 E7 proteins in order to maintain the viral replication in CaSki cells. However, we would like to address whether the activator B-myb-DREAM complex is critical in regulating the replication and mitosis phase since our previous study showed increased B-myb-DREAM expression in HPV-transformed cell lines when compared to control cells.
    Matched MeSH terms: Kv Channel-Interacting Proteins/metabolism*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links